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Systems biology is a burgeoning field in which researchers
are investigating a flood of new data that is gathered in high-
throughput genomics, proteomics, and related analyses. Systems
biologists focus on what this data reveals about the functioning
of living systems. The large volume of data, and the complexity
of living systems, ensures that computing plays a central role in
analyzing, modeling, and simulating these systems. In this paper,
we discuss some of the key challenges in the field of computational
systems biology. We also discuss possible ways in which the field
of systems biology may evolve in coming years, along with some of
the demands that systems biology research places on computing
resources.

Introduction
Since the 1980s, computing has changed many aspects

of the way in which biological science is conducted.

For example, computer-automated techniques have

dramatically enhanced scientists’ ability to sequence

DNA and to quantitate and identify proteins and RNA

transcripts present in biological samples. The cost of

sequencing DNA has fallen roughly a thousandfold

during the period from 1990 to 2006. These kinds of rapid

analysis techniques are examples of ‘‘high-throughput’’

biology. Computer databases store, manage, and make

accessible the flood of data that results from high-

throughput methods. A visitor to a large genome-

sequencing center, such as the Sanger Institute, located

near Cambridge, UK, encounters large rooms filled with

computer-controlled DNA-sequencing machines and

other large rooms filled with many racks of high-powered

servers and arrays of storage disks. A small amount of

biological material enters these sequencing machines and,

after a great deal of computer processing, megabytes or

gigabytes of new genomic data are deposited in the

databases and become available on the Web.

However, the gathering of ever more data is not an

end in itself. Data gathering simply opens the way for

investigating how the molecular components, which

are found by using high-throughput techniques, work

together in living systems. Various scientific efforts to

address that challenge have been consolidated under the

term ‘‘systems biology,’’ also sometimes called in silico

biology or integrative biology. All of these terms are

imprecise. In this paper, we use ‘‘systems biology’’

because it is the most frequently used term and it

emphasizes the importance of the complex systems under

study. Whatever terminology is used, computing that

involves modeling and simulation is clearly becoming

more closely intertwined with the biological research

and the science itself [1].

To explore the question of how systems biology is

likely to grow and the roles that computing will play, we

conducted a series of in-depth discussions with leaders

in the field. We interviewed people at pharmaceutical

companies (Merck and GlaxoSmithKline), research

institutes (e.g., the Institute for Systems Biology, the

European Molecular Biology Laboratory, and The

Molecular Sciences Institute), biotechnology firms (e.g.,

BG Medicine and Genomatica), universities (e.g.,

University of California, Berkeley; University of

California, San Diego; Cambridge University; and

Oxford University) and biological standards groups [e.g.,

the Systems Biology Markup Language (SBML) group].

See the Appendix for a full list of interviewees whose

insights made this report possible. However, note that the

views expressed here are the responsibility of the authors.

In this paper, we first characterize various kinds of

efforts that can be considered to be part of systems

biology. We then discuss some of the challenges that must
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be overcome for systems biology to achieve its promise.

Finally, we provide a brief discussion of how the field

may progress over the next few years.

What is systems biology?
If one thinks of the output of high-throughput biology

as a large living systems ‘‘parts list,’’ which includes

components such as genes, proteins, RNA transcripts,

and various other biomolecules, then researchers in

systems biology seek to understand how the various

parts fit and function together in the larger systems.

Researchers investigate how synergy arises in these

systems, the behavior of which cannot be understood

by examining the parts in isolation.

The goals of systems biology, which address the

biological areas depicted in Figure 1, are not new.

Systems biology researchers seek to understand the

structural, genetic, and dynamic relationships of living

systems at scales that range from small biomolecular

complexes and biochemical pathways to whole organisms

and even interrelated ecologies of organisms. Many

biologists, including several of the systems biologists

we interviewed, have pointed out that understanding

these relationships has always been the goal of biology.

However, making sense of the mass of new data calls for

computing to play an increasingly important role in

meeting the goals of biological research, and this new

focus warrants coining a new name. In a sense,

computational systems biology is an inevitable

consequence of the success of high-throughput biology.

The term is used in connection with a wide variety of

scientific efforts, out of which four major themes and

focus areas have emerged:

� Automated analysis. Sophisticated computer analysis

techniques make inferences or predictions from

various kinds of high-throughput data. Examples

include predicting structure and function from protein

sequence information, and automated DNA-sequence

annotation, using various techniques for identifying

potential genes and other functional sequences.
� Modeling. Descriptive computer models are built

that summarize and organize data. For example,

pathway or network models are derived from DNA

expression data and from protein–protein or protein–

DNA interaction data.
� Simulation. Predictive dynamic computational models

(e.g., ordinary or partial differential equation models)

are built that use researchers’ knowledge of the

biological parts in order to better understand the

implications of their interactions and their roles in

larger systems.
� Integration of computational biology and experimental

biology. Computational results are used to guide

new experimentation followed by additional

computational analysis and modeling of the new

data (Figure 2). Most leaders in the field consider

this marriage of computation and experimentation

to be vital to systems biology. The complexities of

Figure 1

The space of systems biology. Research is required in all areas of 
this space in order to understand the complexity and interactions 
among the various structure, information, and time scales.
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Systems biology paradigm: The essential cycle between wet-lab 
experimentation and computational modeling and analysis.
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living systems can be disentangled only by an iterative

process of modeling, simulation, and wet lab

experimentation. The cycle of continual refinement,

represented by arrows in the figure, requires a

multidisciplinary effort.

The hierarchy of biological systems

Living systems are organized at many different spatial

scales, ranging from individual small molecules, such as

amino acids and nucleotides, to whole organisms. The

elements at a given level (such as genes and proteins) are

organized into both logical and physical structures. The

sequences of nucleotides that make up DNA and RNA

are organized into higher-level logical structures such as

regulatory binding sites, splice sites, exons (DNA regions

that code for proteins), introns (DNA regions that do not

code for proteins), and genes. DNA is also organized into

larger physical structures such as heterochromatin and

chromosomes. The sequences of amino acids in proteins

are logically organized into leader and mature sequences,

and the mature proteins are physically organized, or

folded, into secondary and tertiary structures that are

crucial for proper protein function. At the next larger

scale, sets of proteins can be logically organized into

pathways—for example, networks in which the nodes are

proteins, and each connecting arc represents the potential

binding of one protein to another or a modification

of one protein by the other, such as in the process of

phosphorylation. Sets of proteins, which may contain

small molecules of RNA, are often physically organized

into multi-molecular structures called assemblies or

complexes. Two examples of many such complexes are

the nucleosome and the ribosome [2]. The ways in which

these various structures interact determine the workings

of a cell. Cells, and the extracellular matrix they produce,

in turn form tissues that are organized into organs.

Systems biology aims to understand at each level how the

logical and physical organizing principles of the parts

determine the function of the higher-level system [3, 4].

Individual researchers usually work on manageable

pieces of the larger systems biology puzzle. Some focus on

logical relationships and others on physical relationships.

Researchers also investigate different levels of the systems

biology hierarchy. For example, some investigate the

function of individual genes or proteins. Others

investigate the pathways and networks that characterize

the interactions between pairs of molecular components

or focus on the physical molecular assemblies that

perform most biological functions. Still other researchers

study higher-level structures such as whole cells, biofilms,

tissues, and organs. Each of these endeavors tends to have

a different nomenclature, use different tools, and confront

different problems, which are summarized in Table 1.

Table 1 Nomenclature, tools, and challenges at the different levels in the systems biology hierarchy.

Level of organization Entities Computational tools and techniques Challenges

Parts Genes, proteins,

DNA binding sites,

splice sites, membrane

targeting signals

� Sequence matching
� Gene prediction
� Protein structure prediction
� Data mining

� Consistent naming
� Referential integrity
� Curation and accuracy
� Ontologies

Networks and pathways Pairwise relationships

between parts, such as

the entities in row 1

� Path tracing in networks,

shortest path finding
� Cluster analysis
� Descriptive models and simulations
� Entity-relationship diagram tools

(e.g., Gene Ontology tools)
� Visualization

� Separating meaningful relationships

from artifacts
� Understanding temporal

relationships
� Understanding effects of

perturbations

Assemblies and complexes 3D structures of

parts, such as proteins

and RNAs

� Modeling
� Simulation
� Visualization

� Description and modeling of

location in the cell
� How structure determines function
� Relationship to pathways
� Interactions with other assemblies

Systems Structures of

substructures, such

as organelles,

cytoskeleton, cells,

biofilms, tissues,

organs

� Modeling
� Simulation
� Visualization

� Prediction and explanation across

levels of hierarchy
� Building multiscale models, both

physical and temporal
� 3D structural connections
� Experimental validation of

models and simulations
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In the next few paragraphs, we briefly discuss these

hierarchical issues and associated challenges. We then

discuss issues facing the field of systems biology as a

whole.

Genes or proteins can have multiple names within a

single organism and additional names when different

organisms are being considered because, over the years,

these genes and proteins have been discovered and

rediscovered in different contexts and different organisms.

This proliferation of names causes confusion and

complicates the tasks of automated analysis and manual

data curation. Existing high-throughput data may be

revised as errors in the data are found and corrected.

Revision of the underlying sequence data creates

problems of ‘‘referential integrity’’ for the higher-level

models, descriptions, and simulations that attempt to

refer consistently and accurately to their component

parts. Referential integrity is an example of a key systems

biology challenge, listed in the rightmost column of

Table 1. These difficulties highlight the value of careful

human curation and the need for commonly accepted

ontologies, which may be thought of as agreed-upon

categorizations or naming conventions [5].

Biologists and bioinformaticians analyze genomic

and proteomic sequence data with a wide variety of

computing tools such as BLAST for DNA or protein

sequence matching, ClustalW for multiple DNA or

protein sequence alignment, GeneScan for identifying

gene features such as exons and splice sites, and

HMMER for deducing hidden Markov models

underlying amino acid sequences in families of related

proteins. Tools such as PREDATOR, NNPREDICT,

and Jpred attempt to predict secondary protein structure.

More than a hundred research groups are working to

develop and improve techniques for protein folding from

amino-acid sequence data, techniques that are more

precisely known as in silico tertiary structure prediction.

All of these tools and techniques are compute-intensive.

For example, BLAST and its variants consume an

increasingly large number of compute cycles at

universities and research institutes. When in silico protein

folding becomes more reliable, it promises to consume

even more compute power.

Systems biology researchers are often concerned with

the ways in which biomolecules and portions of those

biomolecules participate in pairwise interactions with one

another. (Some of these biomolecules are listed in the first

row and column of Table 1.) For example, two proteins

may bind to one another, or one protein may modify the

behavior of another protein by attaching a phosphate to

it. Genes interact with one another as well. The product

of the expression of one gene may bind to DNA to

enhance or suppress the expression of the same or

another gene. Biologists, armed with various kinds of

pairwise interaction data about genes and proteins, create

genetic control-network models and protein-pathway

models. These network models can illuminate patterns

in the interactions between parts and thereby uncover

biological mechanisms [6]. However, it can be difficult to

interpret network models, especially large models such as

the genetic interaction network of C. elegans (a small

roundworm), which comprises more than eighteen

thousand interactions [7]. Not all of the putative

or possible interactions in such a large model are

biologically significant in the living cell. The networks are

often incomplete, and second- or third-hand effects, such

as those that involve one or more intermediary nodes,

may be as important for biological function as the direct

interaction represented by a single arc in the network. In

addition, researchers who study the dynamics of network

models typically lack time-series data to guide their

efforts. Thus, the temporal properties of these systems

are often poorly understood.

Note that proteins do not associate in only a pairwise

manner. Some researchers believe that nearly every

important function in the cell is carried out by a physical

assembly (or complex) of ten or more proteins [8]. For

example, the Eukaryotic Polymerase II (Pol-II) pre-

initiation complex, the molecular ‘‘machine’’ that attaches

to the initiation point of a gene to begin the transcription

of DNA into RNA, is made up of at least a dozen

different protein components [9]. The spliceosome, a

nuclear complex or molecular machine that processes the

RNA transcript in order to excise introns and splice the

exons together, is a much larger assembly composed of

as many as 300 distinct proteins and five RNAs [10]. As

research in pathways and assemblies advances in parallel

efforts, one challenge will be to determine how highly

interconnected clusters of nodes in network models [11]

relate to such physical assemblies. We also need to

understand precisely how the assemblies function both

in isolation and in concert with other assemblies. This

will involve detailed dynamic 3D models that require

substantial computing resources.

At an even higher level of abstraction, biologists model

systems of subsystems (bottom row of Table 1). The

MCell simulator program [12], for example, models the

microphysiology of neuromuscular synaptic junctions in

terms of membranes, synaptic vesicles, neurotransmitter

molecules, receptors, and ion channels. Virtual cell

models attempt to represent a cell by relating underlying

subsystems such as pathways, complexes, organelles,

membranes, and sometimes the cytoskeleton. Examples

include 1) the erythrocyte (red blood cell) model

developed in 1988 by Bernhard Palsson [13]; 2) the E-Cell

initiative, an international research project aimed at
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developing necessary theoretical supports, technologies,

and software platforms to allow precise whole cell

simulation [14]; and 3) the CyberCell project [15, 16],

which is affiliated with the International E. coli Alliance

and is concerned, in part, with detailed mathematical

models to simulate all or part of a bacterial cell at

nanoscopic (10�9 m), mesoscopic (10�8 m), and

microscopic (10�6 m) levels [17]. Several biotechnology

companies, such as Genomatica and Gene Network

Sciences, have also produced cell models. Virtual tissue

and organ models, also in the last column of Table 1,

include angiogenesis models [18], and models for

diabetes, obesity, and asthma produced by Entelos, Inc.

[19]. Research at the level of systems of systems demands

complex models and simulations, which can often be

challenging to validate experimentally. Accurately

understanding system behavior, from known or presumed

behavior of parts, requires an iterative research cycle. For

example, the initial simulations generate predictions that

require experimental validation. One or more unfulfilled

predictions will often require revisions to the simulation

and another cycle of research. Finally, many of these

simulations will eventually have to deal explicitly with the

3D realities of the underlying physical mechanisms. For

example, pathways for fatty-acid synthesis (which are

targets for both anti-obesity and anti-cancer drugs

in humans) are very similar in bacteria, fungi, and

mammals. However, the underlying physical structures

for these pathways are quite different [20]. In bacteria

such as E. coli, the individual enzymes, represented by

nodes in the pathway model, are separate, freestanding

protein molecules that diffuse independently in the

cell cytoplasm. In fungi and mammals, the individual

enzymes are assembled into large physical complexes that

function as efficient molecular assembly lines [21, 22].

Interestingly, the physical architecture of the mammalian

complex differs dramatically from that of the fungi

complex. The mammalian architecture features parts that

function like hinges to help orchestrate the synthesis,

whereas the fungi complex does not seem to have any

moving parts. These 3D structural differences may

produce very different dynamics in fatty acid synthesis.

General issues facing systems biology

The long-term benefits of systems biology will become

manifest in the form of advances in biotechnology,

medicine, and pharmaceuticals. Better crops,

fermentation processes, methods of drug discovery, and

personalized medicine, all of which are based on systems

models of cells and organs, are the most obvious possible

benefits to come from research in systems biology.

However, the benefits will not come easily or quickly.

Today’s simple models only give hints as to their

potential. Many challenges must be overcome before this

potential is fully realized.

Systems biology is not simply an extension of high-

throughput biology. Systems biology is a synthetic

endeavor rather than a reductionist one, because it relies

heavily on capturing the ‘‘big picture’’ with respect to the

wealth of data now available, and embodying those ideas

in models and simulations. These models eventually must

relate to the full range of complexity of living systems.

Some models must deal explicitly with detailed spatial

and temporal relationships between the elements of a

system so that interactions can be faithful to the effects of

proximity in space and time. For example, both calcium

ion signals and protein kinases are notoriously

promiscuous (i.e., nonspecific); their spatial distribution

in the cell, rather than their ability to bind to specific

receptors, determines their function [23, 24]. Models will

sometimes require stochastic components as well in order

to realistically capture system behaviors [25].

Numerous systems biology questions come to mind.

How do we deal with such issues when we do not know all

the details of the structures? Which details are crucial,

and which details might be ignored? How do we sift

through and organize all the data we have? How do we

choose the ‘‘right,’’ or appropriate, model? When multiple

researchers such as biologists, mathematicians, and

computer scientists are involved, how should these

scientists reach a consensus about model choice? How

do we balance the needs for model testability (which

motivates the creation of simple models) and the need to

account for the richness of the real biological systems

(which argues for making models more complex)? Some

of these issues are addressed in the following sections, but

obviously the answers to these questions vary according

to the specific problems being studied.

Obtaining appropriate data

The apparent glut of genomic and proteomic data may

give the impression that much more data exists than is

needed. However, interviews with scientists suggest that

data generated by experimentation is likely to be the

limiting factor in systems biology research. Systems

biology modelers we interviewed repeatedly told us

that critical kinds of data are missing. The iterative

interplay of modeling and simulation with the related

experimentation is often most useful when the models

make nonintuitive predictions. Verification or rejection

of unexpected or nonintuitive predictions may require

not only new experimental data, but also new kinds of

experiments. Carrying out these experiments can take far

longer than adding or changing features of a computer

model. As a particular challenge, such kinds of data and

kinds of new experiments may not be interesting to more
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traditional biologists or even publishable, on their own, in

more traditional journals. Thus, these kinds of data may

have to be gathered as integral parts of interdisciplinary

systems biology programs.

Managing, organizing, and searching network data

New DNA sequencing techniques will be much faster

than current methods in common use [26], and similar

advances are also accelerating the collection of RNA

transcript and proteomic data. When such techniques

become widespread, much more data will demand

attention. For example, personalized medicine may

help physicians guide treatment specific to an individual

when the genomes of individual people are sequenced.

Systems biology benefits from flexible and rapid query

of many disparate and differently organized databases.

Database challenges include data integration problems,

which will require solutions to the naming, referential

integrity, and ontology problems. These problems are the

subject of several standards efforts, for example, BioPax

[27], a collaborative effort to create a data exchange

format for biological pathway data.

Analysis of the raw data generates derived data such

as DNA annotations, sequence alignment information,

putative participation in various pathways, and structure

predictions that will require significant storage. For

example, comparative BLAST searches of whole genomes

generate large files of results. We are nearing a time when

computational power may allow ‘‘all-by-all’’ sequence

comparisons (i.e., all genomes are compared to all other

genomes). Results of all-by-all searches will be quite

large, and so costly to generate that they will have to be

stored. Once stored, search results will themselves become

the object of data mining and further analysis.

A considerable portion of the flood of new data takes

the form of networks or tree structures. For example,

metabolic and gene regulation pathways are inherently

networks. Annotation data is often in the form of

networks. 3D structures can often be described as a

hierarchy of containment and attachment; for example, a

molecular complex such as a ribosome may be attached

to the membrane of a ‘‘container’’ organelle such as the

endoplasmic reticulum that in turn may connect to the

nuclear membrane. One common perspective of systems

biology argues that networks are the fundamental

organizing principle of cellular function [6, 28].

Unfortunately, the commercial databases that can handle

large volumes of data in a robust and reliable way are

relational databases that are not well suited to storing

network structures. Of course, one can represent any kind

of network model in a relational structure by storing

relations between nodes and arcs, from which the

network can be recreated. However, this kind of

relational representation does not provide much support

for directly searching, navigating, or modifying a

network. A separate application must usually be provided

to reconstruct the network, in computer memory, from

the information in the database, and provide search,

traversal, and modification functions. Appropriate

changes must then be written back into the database.

Therefore, a number of leaders in computational systems

biology argue that they need a commercial-quality

database that can directly provide the needed search,

traversal, and modification functions [29]. Lacking

what is really needed, some researchers use homemade

(custom) databases or the rudimentary object/relational

capabilities of commercial databases. Others use relational

databases with front-end servers to rapidly reconstruct

networks. None of the robust commercial databases

are optimal.

Choosing the appropriate kinds of models and

simulation techniques

Modeling complex systems continues to be as much an

art as a science [6]. Part of that art is in recognizing that

different systems and subsystems may require very

different kinds of models. For example, C. Rao and

A. Arkin distinguish at least five basic kinds of cellular

simulation models [30]:

� Metabolic models are characterized by conservation of

mass and mass action, whereby the rate of a chemical

reaction is proportional to the quantity of the reacting

substances. These kinds of models describe networks

of basic metabolic biomolecules and the enzymatic

reactions that create them and/or break them apart.

These reactions and their associated reaction rates

are described by differential equations.
� Bifurcation models (genetic switch models) represent

systems that probabilistically and irretrievably assume

one of two possible paths. These models require

modeling of positive feedback biological ‘‘circuits’’

that magnify an initial small bias toward one outcome

or the other so as to produce a permanent strong bias

[31].
� Multistage growth models characterize systems that

are analogous to an assembly line—for example, a

system involved in the production of many copies

of the T7 bacteriophage in an infected E. coli

bacterium [32].
� Cell cycle models, such as cell-division (mitosis) or

cell-death (apoptosis [33]) models, must be able to

mimic the careful cellular control of transitions from

one stage of the process to another via biochemical

checkpoints that prevent progress to the next stage
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until all necessary steps in the prior stage are

complete.
� Signal transduction models are characterized by

networks through which information flows. The

information may be communicated by cascades of

small, temporary changes to the state of various

biomolecules—for example, a change made by

attaching a phosphate to a particular amino acid

residue in a protein molecule. To the extent that signal

transduction models involve very small numbers of

molecules, the models may require stochastic

treatment.

While one could devise other categorizations of

models, it is clear that one type of model does not fit all

circumstances. However, most systems biology efforts,

including the well-known virtual cell programs, focus

their attention on just one or two of these kinds of models

because the researchers building a particular model

typically seek to explain just one or two sorts of biological

function. Building a complete model of a cell, especially

one that can predict both the beneficial and the

deleterious side effects of a new drug, will require dealing

with multiple cellular simulation models at once.

Computational demands of modeling and simulation

The computational demands of the many kinds of models

and simulations vary widely. Some models run on

personal computers, some on workstations, some on

Linux** clusters, and some on supercomputers. Models

that attempt to simulate physical structures, especially at

multiple temporal and spatial scales, tend to require much

greater computational resources than models that analyze

logical structures such as pathways. For example, protein

folding, i.e., tertiary structure prediction, can seemingly

consume as much compute power as a researcher can

devote to it. Reverse-engineering of pathways [34] and

Monte Carlo simulation of stochastic processes are also

notorious for consuming great amounts of compute

power.

Whatever the current compute demands for simulation

and modeling by the researchers interviewed for this

report, they shared a belief that their future research will

require far more compute power. Most foresaw a need for

at least Linux cluster support. Their view of the required

size of the cluster appeared to correlate with their current

consumption of computational power. Those researchers

currently using personal computers envisioned a need for

relatively small clusters (perhaps 8 to 16 nodes). Those

already doing more ambitious computing tended to see

a need for clusters with several hundred nodes. A few

groups mentioned 1,000-node clusters, and one group,

which used a 96-node cluster for reverse-engineering large

pathway models, suggested that they would like a 10,000-

node cluster. To some degree, these differing views of

computational requirements reflect the old adage that

computing needs expand to fill the available supply.

However, in general, understanding the complexity of

living systems will require all of the compute power

that researchers can obtain for many years to come.

Simulation frameworks

Several efforts are underway to build either open-source

or proprietary general software frameworks for systems

biology simulation. For example, the Japanese E-Cell

project, with contributions from the California Institute

of Technology and the University of Hertfordshire, UK,

provides an open-source simulation framework called

‘‘The Systems Biology Workbench’’ [35], which uses

differential-equation models and some simple stochastic

models. Another open-source framework effort is

Bio/Spice [36], a biological data analysis and modeling

workspace that is based loosely on SPICE tools used by

electrical engineers for circuit analysis and modeling. The

Virtual Cell framework [37], which is a Java** framework

from The Center for Cell Analysis and Modeling

(CCAM) at the University of Connecticut, is intended to

be useful for a wide variety of modeling efforts. Several

relatively new companies also provide proprietary

simulation frameworks. Physiomics, a UK company

based in Oxford Science Park, markets a simulation

system called SystemCell** that can model systems such

as the EGF (epidermal growth factor) signaling pathway

or the Ras control circuit, which is involved with cancer

growth. Entelos, an American biosimulation company,

markets another proprietary system called PhysioLab**,

technology for simulating metabolic disease processes

such as diabetes. Other examples of companies involved

in the creation of simulation frameworks include the

American companies Genomatica and Gene Network

Sciences. Genomatica markets SimPheny**, a client-

server application that enables the development of

predictive computer models of organisms, from bacteria

to humans. Gene Network Sciences markets VisualCell**,

a data integration platform and drawing software toolkit

that enables large-scale cellular modeling.

Simulation frameworks are most useful when they

address the general parts of the problem and leave

the specializations needed for a given problem to the

researcher. However, enough experience may not yet have

accumulated in simulating biological processes to judge

what a framework should provide. Frameworks created

for a single laboratory or research effort are valuable for

those researchers within that lab who share assumptions,

data structures, and research aims. However, such

frameworks may impose constraints on their users that
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will not be acceptable to researchers with slightly different

aims and assumptions.

Finding people with the appropriate analysis,

modeling, and simulation skills

Computational biology, bioinformatics, and systems

biology are all relatively new disciplines. Twenty years

ago, most biologists outside the field of biophysics

considered computing to be unimportant to biological

research. Today, computing plays an important role in

almost all areas. Such a shift in focus requires the efforts

of multitalented individuals. Some systems biologists are

truly interdisciplinary, combining biology expertise with

mathematical and/or computational modeling expertise.

However, many biologists still lack the math and

computer skills needed for the analysis, modeling, and

simulation required by systems biology. Conversely, few

people with the necessary math and computing skills have

a good understanding of cellular and molecular biology

or the experimental skills needed to gather the data

necessary to support and verify models.

One response to this shortage is the formation of new

multidisciplinary university undergraduate and graduate

programs, typically associated with new research

programs. Examples include MIT’s Computational and

Systems Biology Initiative (CSBi), Harvard University’s

Department of Systems Biology, the University of

Ottawa’s Institute of Systems Biology, Rutgers

University’s BioMaPS Institute for Quantitative Biology,

Stanford University’s Bio-X Program, Amsterdam’s

Institute for Systems Biology, Keio University’s Institute

for Advanced Biosciences in Tsuruoka, Japan, and the

Swiss Federal Institute of Technology’s Institute for

Molecular Systems Biology in Zurich. Despite these

and other excellent university programs, demand for

interdisciplinary systems biology researchers and

programs nevertheless continues to outstrip supply.

Until the skills shortage abates, systems biology efforts

will continue to attract new people from other scientific

disciplines who have the desired mathematical, modeling,

or simulation skills but lack deep knowledge of biology.

These ‘‘immigrants,’’ or newcomers to systems biology

research, will bring with them preconceived biases toward

particular simulation methodologies, software development,

hardware vendors, operating systems, programming

languages, and tools. The biologists who rely on these

newcomers often lack the knowledge needed to evaluate

the modeling and simulation approaches recommended

to them. As a result, the modeling methods familiar to

the newcomers may improperly influence the choice of

modeling approaches in the early stages of research.

Immigration to the field of systems biology also affects

the character and goals of both research and commercial

efforts. Groups dominated by biologists see the world

rather differently from groups dominated by experts in

computing, engineering, chemistry, mathematics, or

physics. Biologists show more humility in the face of

the complexity of living systems. Biologists tend to use

modeling and simulation to understand interactions and

dynamics in systems that they have studied by other

means. In contrast, non-biologists tend to use computing

to organize and sift through large volumes of data, such

as high-throughput data, in the hope of discovering

hitherto unrecognized patterns and function. Perhaps a

useful analogy is to think of the biologists as tending

to prefer a target rifle when focusing on a biological

problem, whereas the non-biologists may prefer a very

broad shotgun approach. Both of these approaches can

provide valuable results.

Facing the limits of Occam’s Razor

Since the 14th century, science and scientists have relied

on Occam’s Razor to guide theories and their models.

When choosing between two alternative models, theorists

are admonished to pick the one that requires the fewest

assumptions. Occam’s Razor may indeed work well in the

physical sciences, where complex phenomena result from

a relatively few underlying laws. Biology, however, is a

science that deals with a complex evolutionary history, in

the sense that biology focuses on mechanisms that reflect

the consequences of 3.5 billion years of evolution. Each

successive ‘‘advance’’ in the function and complexity of

living systems must coexist and survive in competition

with preexisting mechanisms. Thus, biological systems

are a triumph of layer after layer of what software

professionals would call ‘‘clever hacks.’’ Each new layer

exploits the hacks that have come before. To use another

programming metaphor, in biology most ‘‘bugs’’ that

aren’t fatal turn out to be features.

Because of the long evolutionary history underlying

biological systems, these systems tend to be complex and

‘‘messy’’ rather than simple and elegant. For example, the

outdated ‘‘simple and elegant’’ model of gene function is a

model in which one gene codes for one protein which,

in turn, has one function. However, life is not so simple.

For instance, some viruses use what is called a ‘‘-1

programmed frameshift’’ to produce two proteins in the

correct relative proportion from one gene [38, 39]. This

biological trick amounts to turning the common ‘‘off-by-

one’’ programming error into a powerful biological

systems feature—a very clever hack indeed.

Terry Gaasterland, previously of Rockefeller

University, asserted in her 2002 keynote talk given at

the Intelligent Systems for Molecular Biology (ISMB)

conference, ‘‘if you can think of [some surprising quirky

cellular mechanism], you will find that somewhere the

biological machinery does it.’’ For example, the
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previously mentioned ‘‘two-proteins-for-one-gene’’

feature of viruses seems almost unremarkable when

compared to alternative splicing in eukaryotes (cells with

a membrane-enclosed nucleus). As discussed earlier in

this paper, eukaryotic genes consist of coding regions

called exons interspersed with non-coding regions called

introns. In the cell nucleus, after the gene is first

transcribed from DNA into RNA, but before the RNA is

translated into protein, large RNA–protein complexes

called spliceosomes remove the introns and splice the

ends of the exons together into one contiguous coding

sequence. This splicing is somewhat error-prone or

probabilistic [40]. However, nature turns ‘‘errors’’ in

splicing into powerful features. Evolution has seized on

the fallibility of splicing to provide multiple proteins from

a single RNA transcript. By various estimates, 35–60% of

human genes generate alternative splice variants [41, 42].

Some human genes produce hundreds of alternative splice

variants. The functions of the splice variants may be

complementary and related, or may even oppose one

another. For example, the bullfrog gene for the

gonadotropin-releasing hormone receptor (GnRH)

encodes a splice variant that acts as a repressor of the

receptor itself [43]. The product of one splice variant is

a receptor, and that of another variant is a protein that

inhibits that same receptor. This ‘‘clever hack’’ in nature

provides a control circuit, because changes in those

factors that bias the system toward the receptor splice or

the repressor splice will control the cell’s sensitivity to the

hormone. The opportunities for other surprising complex

and unforeseen mechanisms are endless. Such chaotic

evolutionary creativity makes a mockery of Occam’s

Razor.

From what we have just discussed, it becomes clear

that the complexity of biological systems challenges those

who want to build biologically relevant models and

simulations. Modelers steeped in centuries of scientific

tradition, especially newcomers to systems biology from

the physical sciences, tend to look first for simple models,

not complex ones. However, overly simple models are a

liability in biology; many a potential drug target has

turned out to be worthless because the pathway in which

it participates is more complex and sophisticated than

expected [44–46]. This tension between complexity and

simplicity suggests at least two important lessons for

systems biology modeling:

� The systems biology field would benefit from an

explicit discussion about principles that should

replace or modify Occam’s Razor in biological

modeling. Without such explicit discussion, the

many newcomers from physical sciences are likely to

repeatedly underestimate the complexity needed for

useful models. To minimize that risk, the computing

and modeling must always be grounded in the

biology.
� Modeling and simulation in the absence of

experimental feedback and validation are likely to

lead us down blind alleys. This is one reason why the

senior researchers in the field unanimously emphasize

the need for iterative collaboration between

computational and experimental work. Relatively

simple models may be used at the start of research,

but early apparent success may often mean that

a researcher simply has not yet gathered the

disconfirming data. Many elaborations are usually

needed before the models have much predictive value.

Adding stochastic properties to models

Not only are biomolecular mechanisms more complex

than might have been imagined, they are often more

probabilistic as well. Since many important cellular

functions are carried out by very small numbers of

molecules, the randomness inherent in individual

molecular events can become apparent at a cellular level.

For example, C. Rao and A. Arkin note that ‘‘[genetic] . . .

switches are stochastic, underlining the single-molecule

nature of the DNA medium in which they are

implemented’’ [30]. Stochastic gene expression has

been observed directly in prokaryotic cells [47, 48]

and eukaryotic cells [49].

While we may be tempted to assume that such

biological randomness is merely a nuisance, evolution

exploits it. Stochasticity in gene expression can be

essential for many biological processes [49, 50]. For

example, researchers writing in Nature Reviews Genetics

have recently noted that stochasticity ‘‘. . . can provide

the flexibility needed by cells to adapt to fluctuating

environments or respond to sudden stresses, and a

mechanism by which population heterogeneity can

be established during cellular differentiation and

development’’ [25].

Wherever stochastic properties of systems are

manifested, deterministic models may not be able to

account for the observed behavior. Instead, simulation

techniques such as Monte Carlo methods are needed.

Monte Carlo methods can require considerably more

compute power because they require many iterations for

a given set of parameters. They also require carefully

chosen mathematical descriptions of the underlying

random processes.

Accounting for 3D structure and location

Those researchers interested in studying higher-level

structures, such as protein assemblies, whole cells, tissues,

and organs, generally need to take into account the 3D
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structure of the system and its components. For example,

heart models generally must explicitly model the anatomy

of the heart as well as its electrophysiology. New

techniques such as cryoelectron tomography are

providing an increasingly detailed look at the internal 3D

structure of eukaryotic cells [51]. The case for using 3D

models for tissues is even more self-evident, as noted

by researchers writing in the Annals of the New York

Academy of Sciences: ‘‘. . . the complex motions that

characterize tissue and organ formation in 3-D space

are not found encoded in DNA and cannot be fully

recapitulated in [ex vivo] model systems’’ [52]. The need to

model 3D structure adds another level of complexity and

computational demand that is not required for studying

logical structures.

Modular biology

In the mid-1980s, when high-throughput biology

originated, individual genes and proteins were thought to

be the primary functional elements in the cell. Genomics

and proteomics involved searches for those functional

elements. In the past decade, as we have already

discussed, researchers have come to realize that most

protein machinery is composed of multi-molecule

assemblies, also sometimes called complexes or modules,

that act as molecular machines to carry out biological

function. For example, researchers have identified more

than one hundred protein assemblies in baker’s yeast that

range in size from two to 83 protein molecules. Many of

these assemblies have close analogs in humans [8]. As

Leland Hartwell and his colleagues at the Fred

Hutchinson Cancer Center have noted, we are seeing a

shift from molecular biology to modular biology [53].

Assemblies are important in cellular function because

they are exquisitely structured to provide many avenues

of control and to minimize crosstalk between unrelated

pathways and mechanisms. For example, three-

dimensional assemblies of scaffold proteins physically

organize the proteins in certain signaling pathways. In the

yeast mating pathway, ‘‘. . . scaffolds not only direct basic

pathway connectivity but can precisely tune quantitative

pathway input–output properties’’ [24]. Each part of an

assembly has a precise location in the assembly, and

assemblies themselves tend to be located in specific

regions of the cell and in specific arrangements.

Therefore, many cell models, such as cell-signaling

models that ignore location, distance, and three-

dimensional structure, will eventually have to be replaced

by models that explicitly account for the structure and

location of the assemblies.

At this time, cell models that take location into account

are rare and simplified. For example, they cannot take

into account large-scale cytoskeletal structures. Even so,

the models require substantial compute power to run.

As such models become more common and more

sophisticated, higher-performance computing hardware

will be required to run the resulting simulations.

Self-assembly

Many models will also have to take into account the

‘‘life cycle’’ of the physical structures—that is, how the

structures are created and when and how they are

destroyed. Biological systems are not constructed on

assembly lines by external agents that put together parts

found in a giant catalog according to some blueprint. The

parts and the systems assemble themselves as if in a

perpetual dance, according to choreography that has

emerged over long evolutionary trial and error. Thus, the

models we synthesize to explain living systems must not

only permit but also explain the self-assembly of the

many emergent systems. Although all of the important

protein complexes presumably result from a process

of self-assembly, explicit models of self-assembling

structures, such as microtubules [54], are still rare.

Structural models may also be required to take into

account the deconstruction or disassembly of structures.

Many cellular structures have relatively short lifetimes.

They self-assemble when needed and are disassembled by

various mechanisms when no longer needed. Any systems

biology research that focuses on modeling the assembly

process, with no attention given to the disassembly, may

miss significant opportunities to understand important

biological and medically relevant phenomena.

Assessment of future trends in computational
systems biology
Professor Fotis Kafatos, who at the time of our interview

was Director General of The European Molecular

Biology Laboratory (EMBL), asserted that biology

will become the single largest scientific consumer of

computing. If he is correct—and many of the other

experts interviewed for this paper agree with him—the

‘‘center of gravity’’ of scientific computing activity will

shift from the physical sciences to computational biology.

As discussed, the amount of raw information in biological

systems is immense. Each biological species has unique

DNA and proteins, and, in the case of sexually

reproducing species, every individual has a unique

genome. Manipulating that information has far-ranging

potential economic value. The growth of personalized

medicine is one opportunity, and others include

agricultural and animal husbandry applications, and

harnessing the incredible abilities of single-cell organisms

to act as chemical micro-factories. To exploit those

opportunities, the vast jungle of biological information

must be tamed by computational biology.

As we have discussed above, different approaches to

systems biology face different challenges, offer different
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benefits, and are therefore likely to take very different

paths to success.

The workhorse—automated annotation

Biological databases are rapidly being filled with new

DNA sequences and microarray expression data. In order

to understand this new sequence data, the first step is

to deduce as much as possible about the structure or

function of noteworthy subsequences. This task is called

annotation. Some annotation is done by manual human

effort. However, the volume of new data motivates the

need for automatic annotation [55, 56]. For example,

various bioinformatics techniques are deployed to

� Search the new sequences for similarity with known

genes or proteins in other species.
� Predict coding regions and exon/intron boundaries

and derive the amino-acid sequences that would be

produced if these putative coding regions were to be

expressed as proteins.
� Search for potential splice sites.
� Classify the possible functions of derived amino-acid

sequences in putatively expressed genes according to

predicted secondary structures.
� Search for patterns of amino-acid sequences that

suggest a likely function.
� Search for patterns of amino acids that indicate the

likely cellular location in which the gene product is

used.

Reliable annotation, properly interpreted, can provide

valuable insights into biological function, evolutionary

relatedness, and other useful relationships. Given the

usefulness of annotation, researchers continue to improve

existing techniques and to develop new techniques for

automated annotation.

Pathway models

Many pathway models have been deduced from decades

of experimental work and, more recently, deduced from

high-throughput interaction data. One example pathway

is the ‘‘Wnt signaling pathway’’ that mediates many cell-

development functions in a wide variety of organisms,

including vertebrates, and is also implicated in the cancer

process [57]. Pathway models will eventually be validated

using wet-lab experiments and time-series data, and they

will take into account stochastic issues, as does the

research of Roger Brent and his team at The Molecular

Sciences Institute in simulating the yeast mating

pheromone (G-protein receptor) pathway [58]. Over

the next few years, pathway models will become more

sophisticated and useful as high-throughput biologists

provide more and higher-quality data. The previously

mentioned systems biology companies, such as

Genomatica, Physiomics, Gene Network Sciences, and

Entelos, are working with pharmaceutical companies to

investigate the value of quantitative pathway models for

drug discovery. Moreover, scientific consortia, such as the

BioPathways Consortium [59] and the BioPax standards

group [27], help researchers to share techniques for

fostering progress in computational pathway models.

Pathway models can help organize large bodies of high-

throughput data, such as DNA transcription array data.

Such models may also be used to better understand

precise functional relationships between parts of

relatively small pathways that are deduced from

experiments. Although researchers involved in the

study of both large and small networks can share data

representation standards and modeling techniques, the

role of modeling and simulation is quite different in the

two approaches. For example, relatively small pathways,

containing perhaps a few dozen nodes (e.g., proteins

and/or genes), can now be modeled and simulated with

some precision [58]. More significantly, small pathways

are more accessible to experiment, which means that the

iteration of simulation and experiment can progress at

a reasonable rate. In contrast, the larger networks with

hundreds of nodes, such as those deduced from analysis

of high-throughput data, are not as amenable to

simulation simply because not enough is known about the

dynamics of the interactions between nodes. However,

computer visualization tools can help researchers gain

insights into the processes represented by these larger

networks [60].

These caveats aside, pathway models are expected

to result in improved drug discovery, more hearty and

resistant crops, and insights into the management of such

pests as insects, nematodes, fungus, and weeds. Some of

these advances may be expected in the next five years.

Virtual cell models

Current work on virtual cell models is considerably less

mature than work on pathway models. Those researchers

who would build a virtual cell face daunting problems.

Most of the recent efforts focus on the relatively ‘‘simple’’

E. coli model. This bacterium has ‘‘only’’ 4,000 open

reading frames (i.e., DNA presumed to give rise to

proteins); it has essentially no post-translational protein

modification, and its genes are unitary (i.e., they are not

divided into introns and exons). Moreover, since it lacks

most kinds of organelles, most of its metabolism takes

place in a less structured environment than is found in

eukaryotes. Other systems biology efforts focus on yeast,

because yeast is by far the best-studied eukaryote model.

Roughly two dozen projects exist worldwide to build

virtual cell models. The European Bioinformatics

Institute maintains a database of quantitative kinetic
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models of biochemical and cellular systems [61]. Most cell

models are in the preliminary stages. Currently, it would

be fair to say that virtual cell models do not actually deal

with any whole cell. At best they represent two or three

aspects of the cell, such as metabolic processing, which is

expressed in terms of differential equations together with

some stochastic aspects. As cell models expand their

coverage, they will be overwhelmed by complexity,

especially as they attempt to represent the multiscale

3D structure of protein complexes, cell membranes,

cytoskeletal elements, and organelles, and the multiscale

temporal properties ranging from protein–protein

interactions to mitosis. The effort will be worthwhile

because virtual cell models that do take into account

physical pathway scaffolds, physical compartments, and

temporal structures will be able to more accurately

account for cell behavior. No doubt many of those

models will not initially be useful, but some will offer

genuine advantages and will become commonly used,

though this will probably not happen for at least five

to ten years.

Virtual tissue or organ models

At this time, it appears that virtual tissue models do not

have to account for much of the cellular complexity

within the tissues they model. Thus, the complexity

barrier for systems biology modeling may be substantially

lower for well-chosen tissue or organ models than for cell

models. Nonetheless, multiscale temporal and spatial

issues must still be considered, confronted, and solved

as needed for such systems. When mature, virtual tissue

models, such as tissue angiogenesis models [18, 52, 62] or

heart models [63], may produce clinically useful results.

Conclusions
While traditional biology will certainly continue to make

dramatic discoveries, the role of computational biology in

general, and systems biology in particular, will continue

to grow rapidly as it has for the past several years.

Systems biology papers are becoming commonplace.

Science magazine declared recently that ‘‘Systems Biology

Signals Its Arrival’’ [64]. Additionally, new systems

biology programs proliferate in academe. Despite this

rapid growth, however, computational systems biology is

still in its infancy. This paper has attempted to outline

some of the challenges that must be overcome. The

authors are confident that they will be overcome in

the coming decades.

Today’s efforts to find commercial or clinical

applications of systems biology must surmount technical

problems and also generate marketable results. This

combined challenge is so difficult that many early efforts

are likely to suffer the usual fate of most pioneers. For

example, commercial groups are building systems biology

programs with the hope that pathway and virtual cell

models will quickly lead to more effective drug discovery.

In the long term, this promise will no doubt be fulfilled.

However, early systems biology models will necessarily be

too simple. As discussed, these models will be missing

important elements, dynamics, and interactions, and they

may include extraneous elements and interactions. Hence,

results of early models will tend to be misleading, perhaps

expensively so. In short, we can expect the familiar

‘‘Hype Curve’’ from Gartner, Inc. [65] to apply to the

technologies of systems biology. We will see too much

early optimism largely based on hype, followed by

subsequent disappointment (which Gartner calls the

‘‘trough of disillusionment’’) and finally by more realistic

expectations. This progression often occurs with the

introduction of new technologies. Once realistic

expectations for a technology are set, the early

disillusionment will be followed by a slow realization of

the technology’s actual value. We believe that the same

process will occur with systems biology. Opinions may

differ on whether the peak of the initial hype curve is past

or is yet to come. Either way, we should be prepared to

persevere during the inevitable trough of disillusionment.

Those who do so will likely reap substantial benefits.

Appendix
The interviews and discussions that led to this

assessment took place between July 2002 and January

2005. We are grateful to the following individuals

for their patience and insights:

� BG Medicine (formerly Beyond Genomics)—

Dr. Eric Neumann, Vice President Bioinformatics.

Dr.Neumann is nowat Sanofi–Aventis Pharmaceuticals.
� Cambridge University—Prof. Dennis Bray, a leader

in simulating E. coli chemotaxis signaling pathways.
� Deutsches Krebsforschungszentrum Heidelberg

(DKFZ) (German Cancer Research Institute)—

Dr. Roland Eils, Director of Bioinformatics. He is

also Professor of Bioinformatics at the University

of Heidelberg.
� The European Molecular Biology Laboratory

(EMBL), Heidelberg—Prof. Dr. Fotis Kafatos,

former Director General of EMBL; Dr. Luis Serrano,

in charge of bioinformatics modeling; and Dr.

Christian Boulin, group leader, Scientific Core

Facilities, and other colleagues.
� Fraunhofer Institute, Stuttgart—Prof. Dr.

Herwig Brunner, Director, and two of his staff.
� GBF (German Biotechnology Research Center),

Braunschweig—Prof. Dr. Rudi Balling, Director.
� Gene Network Sciences—Colin Hill, CEO; Dr. Iya

Khalil, VP of Research and Development; Dr. Robert
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Miller, and other colleagues. GNS develops virtual

cell network models for organisms such as E. coli, and

tools for pathway/network modeling.
� Genomatica (a systems biology company based

near the University of California, San Diego)—

Dr. Bernhard Palsson, Co-Founder, Chairman, and

Professor of Bioengineering at the University of

California, San Diego, and Dr. Christophe Schilling,

Chief Technology Officer and co-founder. Bernhard

Palsson was one of the creators of the first ‘‘virtual

cell’’ model of a human erythrocyte in 1988.
� Geospiza (a company providing data management for

pharmaceutical companies)—Dr.ToddSmith, President.
� GlaxoSmithKline (GSK)—Dr. Igor Goryanin, then

Head of Cell Simulations and Pathway Modeling,

GSK Medicines Research Centre, UK. Dr. Goryanin

works on E. coli models and simulations. He is now

Professor and Chair, Computational Systems Biology

and Director, Edinburgh Center for Bioinformatics,

The University of Edinburgh, Scotland.
� Indiana University—Dr. Craig Stewart, Director of

Research and Academic Computing.
� Institute for Systems Biology, Seattle—Dr. Leroy

Hood and colleagues.
� Massachusetts Institute of Technology, Department

of Biology—Dr. Peter Sorger and colleagues.
� Merck Research Laboratories—Dr. Jeff Saltzman,

Senior Director of Applied Computer Sciences and

Mathematics; Dr. Jeff Sachs, Senior Research Fellow,

Applied Computer Science and Mathematics;

Dr. John Thompson, expert on molecular profiling;

Dr. Alex Elbrecht, expert on bioinformatics, and

colleagues.
� The Molecular Sciences Institute—Dr. Roger Brent,

Director and President, and colleagues.
� Oxford University—Professor David Fell, a leader

in modeling metabolic pathways.
� Systems Biology Markup Language (SBML)

community leaders—Dr. Michael Hucka, California

Institute of Technology, and Dr. Andrew Finney,

University of Hertfordshire, UK.
� San Diego Supercomputing Center—Dr. Shankar

Subramanian, head of the bioinformatics effort for

the Alliance for Cell Signaling.
� University of Alberta, Canada—Prof. Michael

Ellison, Department of Biochemistry and Executive

Director of the Institute for Biomolecular Design

(Project CyberCell).
� University of Auckland—Dr. Peter Hunter,

Academic/Institute Director, Bioengineering

Institute.

� University of California, Berkeley, Department of

Bioengineering, and Lawrence Berkeley

Laboratories—Dr. Teresa Head-Gordon, a leading

protein folding researcher; Dr. Adam Arkin, an

influential expert in modeling and simulation; and

Dr. Denise Wolf, a Senior Research Associate in

the Arkin laboratory.
� University of California, San Diego—Dr. Philip

Bourne, Professor of Pharmacology, Director,

Integrative Bioscience, San Diego Supercomputer

Center, President, International Society for

Computational Biology.
� University of North Carolina, Chapel Hill—

Prof. Robert Bourret, a leader in the biophysics

of the E. coli chemotaxis signaling pathway.
� University of Virginia, Department of

Bioengineering—Dr. Tom Skalak, Chairman of the

department, and a leader in tissues modeling and

angiogenesis.

**Trademark, service mark, or registered trademark of Linus
Torvalds, Sun Microsystems, Inc., Physiomics, Genomatica, Inc.,
or Gene Network Science in the United States, other countries, or
both.
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