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ABSTRACT AND KEYWORDS 

Traditional systems building often consists of using a top-down approach.  

That is, conceptualizing the overall organization for how a system should 

operate and then breaking it down so that it fits into logical pieces.  Each of 

these pieces is then divided again and again until manageable units are 

developed in detail.  There is some belief that in order to build very complex 

systems, such as applications that are able to learn and repair themselves, a 

bottom-up approach must be taken to systems design.  System can be built 

with small simple components that together organize to function as a 

complex system.  This is similar to how nature creates complex organisms 

out of cells.  Each cell is a relatively simple unit with a minimal instruction 

set, which is capable of organizing with other cells to create a large complex 

organism. 

This paper studies the emergent properties of single celled organisms and 

how in an evolutionary simulation, multicelled organisms might originate.  

This study may give insights into emergent systems, and will hopefully aid 

in understanding how these systems can be harnessed and created.  

Experiments are performed in an artificial life simulation on a computer 

using Cartesian Genetic Programming.  These experiments produced 

populations of cells, which exhibited novel behavior.  Sometimes, interesting 

group behaviors emerged which showed properties of multicellularity. 

Keywords 

Multicellularity; Genetic Programming; Artificial Life; Emergent Behavior. 
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1 Introduction 

The study of emergent decentralized systems is currently a hot topic for 

many interest groups (Johnson, 2001).  An understanding of the properties of 

emergence would give humans insight into biology, economics, evolution, 

and computer science.  This might help us not only to understand these 

systems but also to harness and create them. 

The origin of multicellular organisms in nature is one of the important 

mysteries currently being investigated in science (Bonner, 2000).  

Discovering how single-celled organisms could have evolved into complex 

beings could be of great value in the understanding of emergence.  Insight 

into this area might help biologists better understand developmental 

biology.  It might also help computer scientists learn how to build bottom-up 

decentralized systems. 

This research project creates an Artificial Life environment for the simulation 

and exploration of emergent behavior and multicellularity.  A form of 

genetic programming called Cartesian Genetic Programming is used in order 

to evolve cell behavior.  A simulation of cellular slime mold aggregation is 

created in addition.  The implementation described will provide a solid base 

for future experiments in this area. 

According to Bonner, “there are three ways of looking at the origin of 

multicellular development: the straightforward, descriptive biological way; 

the way of molecular biology; and the use of mathematical models to search 

for insights.”  In the same manner that he proposes the use of models, the 

experiments performed in this research attempt to give insights to this 
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study.   

The organization of this paper is as follows:  first a background is given in 

the topic of emergent systems and computation.  A history of the 

multicellular development in nature is also described.  The next section (2.3) 

gives an overview to the field of Artificial Life (ALife) and discusses 

previous work relevant to this research.   Section 3 describes the experiments 

and has two main parts.  The first part describes the non-evolving portion of 

the experiments including the slime mold simulation.  After, a description of 

the evolving experiments is made and explains the use of Cartesian Genetic 

Programming.  Finally, the last section forms conclusions on the research 

and discusses possible improvements.  
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2 Background    

2.1 Multicellularity in Computation 

2.1.1 Increasingly Paralleled and Decentralized Computing 

As the limits of traditional systems building begin to be reached, a new 

paradigm of computing must be realized in order for continued progress to 

be possible (Bentley, 2001).  Many say that the next wave of computing will 

be decentralized and focus on emergent behavior (Ray, 1994; Johnson, 2001, 

Bentley, 2001).  This form of computation is becoming increasingly relevant 

as networking and parallel processing hardware are becoming more 

powerful and more readily available.  One problem being confronted now is 

that methodologies and logic for building traditional programs do not work 

for building decentralized systems.   

The majority of computer applications running today have been written 

using serial processing which is often called the ‘von Neumann style’ 

architecture (Mitchell, 1996).  A program has a set of tasks, which are 

executed in a specific order.  Programs are often decomposed into functions 

or objects, but the logic of the program remains serial.  Some types of 

algorithms can be easily converted into parallel tasks.  One example is 

splitting up a large amount of data that needs processing.  As long as the 

results of processing one part of data do not impact the processing of the 

others, then it is possible to have several programs working on the sections 

of data independently.  It is when a problem’s tasks cannot be easily divided 

that difficulty is encountered when designing an algorithm.  It is very 

difficult to create multiple programs that collectively work on a single set of 
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data.  This is especially true if the there is no central coordinator of the 

different programs.   

Computer systems were first introduced as being heavily centralized.  

Originally they were very expensive and a company would have a central 

mainframe that did all of the processing for the company.  Some time later, 

personal computers were introduced which allowed processing to take place 

at each user’s desktop.  Even then there were intermediate steps.  Some 

applications would still have all of the logic run on a central computer and 

the PC’s would only process the displaying of the information.  Other 

programs allowed business rules and calculations to be processed on the 

PC’s but all of the data was stored centrally.  These two examples are how 

most business applications operate today.  There are some applications that 

also allow data to be stored locally.  This is not just until the central server is 

synchronized, but the data remains distributed on individual computers.  

This is much harder to control for a company.  

In the same way that enterprise software has gradually changed from 

centralized processing to decentralized processing of transactions, the same 

type of movement is happening with the processing of a single transaction.  

Instead of a single PC or processor performing a transaction, it might be split 

over several PC’s or several independent programs.  Each program would 

take a different role in the transaction. 

The human mind has a hard time thinking in terms of decentralized parallel 

processing (Resnick, 1994; Johnson, 2001).  Resnick calls this the 

‘decentralize mindset’.  Most people tend to look for a centralized hierarchy 
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when observing a system.  They have a hard time when trying to imagine a 

process with no leaders or central organization. 

There are some applications that are ideal for taking advantage of parallel 

processing improvements in hardware, processors and networking.  Neural 

Network applications that model the behavior of the brain in order to 

perform a task are well suited for this.  They consist of individual neurons 

that together produce an output based on the networks inputs.  These 

neurons can all be processed independently from one another as long as the 

flow of the information is still maintained.  Evolutionary Algorithms such as 

Genetic Algorithms are also ideal for this type of technology.  These 

algorithms take a population of many programs and let them compete 

against each other for fitness.  The fitness trial can often be performed 

independently on separate environments.  Problems that were once too large 

to be solved using traditional serial computers are now solvable due to the 

possibility of massively paralleled programs. 

2.1.2 Emergent Behavior in Systems 

Defining emergence 

The term emergence is used in many different fields with just as many 

usages.  The word emergence will be used in this paper to describe a system 

whose behavior cannot be described by only describing the rules of the 

system’s components.  This is similar to the idea that the whole is greater 

than the sum of its parts.  Each part may have a set of possible actions, but 

the combinations of the parts create a new set of actions that are in some 

way surprising.   
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Various notions of the concept of surprise have been discussed in terms of 

emergence.  If a system can be created in a way that the combined behavior 

of its members is predicted, its behavior is not really emerging.  Langton 

(1989) separates emergence into several categories.  He describes a system as 

non-emergent if its behavior is deducible by inspecting the system’s rules.  A 

weakly emergent system is defined as such if the behavior is deducible from 

the rules with hindsight.  He defines strongly emergent systems at those that 

the behavior can be worked out in theory but it would be prohibitively 

difficult.  Finally, he defines maximally emergent systems as those where 

behavior is impossible to deduce from the system’s specification. 

Langton goes on to describe what can emerge.  Three possibilities are given.  

Structural Emergence is the emergence of form such as flocking and gliders 

in the Game of Life (Berlekamp, Conway and Guy, 1985).  Computational 

Emergence gives the system a way to compute or handle logic, and he 

describes Functional Emergence as occurring when actions that are 

functional are beneficial to the members of the system.  In these categories, 

Functional Emergence is a sub-category of Computational Emergence. 

Possible criteria for emergence may be that a system is made of simple parts 

that together build a complex whole.  This does not have to be true.  It could 

be that complex parts combine to form something even greater in 

complexity.  So relativity is needed when considering the complexity of 

emergent systems.   

Examples of emergent systems are readily available in nature and societies.  

The studies of flocking birds and behaviors of ants and their colonies are 

investigations into some emergent systems in nature.  When observing 
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flocking, it is often assumed that there must be a leader of the flock 

(Johnson, 2001).  But these studies have shown that coordination among the 

members of the flock is what keeps them together.  In the studies of ant 

colonies, the queen ant is shown to have no control over the actions of 

individual ants.   Instead, each ant goes about its tasks using a simple set of 

rules.  As a group they perform complex actions such as collection and 

sorting of food, piling of dead ants, and feeding the queen ant. 

Economics and social systems provide other examples of emergent systems.  

Studies have been performed to learn how markets and pricing work (Cliff 

and Bruten, 1997), how cities are formed (Krugman, 1996; Shelling 1978), and 

even how arms races can be won (Dawkins, 1987).  Shelling studied the 

dynamics of the effects of social classes on neighborhood migration.  He 

showed that patterns of social behavior could emerge from individuals 

following simple rules.  He also discussed how positive feedback in a system 

such could lead to these behaviors.  Each member of a population has 

thresholds for whether or not they will act, as more people begin to act, then 

those thresholds are met and new people act. In his book “The Self-

Organizing Economy”, Krugman (1996) described a model of how 

businesses in a city would group together in an orderly way based on the 

competition factors and benefits of proximity.  

Why Study Emergence 

There are many studies on how to create and observe emergence (Resnick, 

1994; Johnson, 2001).  A better understanding of emergent behavior and how 

it originates can lead to understanding biology, economics, and even traffic 

jams better.  If models can be made of decentralized emergent systems, 
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perhaps predictions can be made concerning their behavior.  And if 

predictive models are possible, it might also be feasible to learn how to 

influence a system to achieve a desired behavior. 

Besides the goal of learning about the behavior of complex systems, another 

reason to study emergence is learning how to actually create them.  It was 

mentioned that humans have a hard time thinking in terms of decentralized 

systems.  It is therefore, hard for humans to create algorithms that work in a 

decentralized way.  Once an understanding of decentralized emergent 

systems is achieved, perhaps it will be easier to create these systems. 

2.1.3 Multicellular Computation 

In the study of natural organisms, the question of how multicellularity came 

into existence is one of the most profound questions being studied today 

(Bonner, 2000).  Knowing the answer to this question would reveal how the 

existence of complex organisms could have arisen from a world of simple 

single celled organisms.  When the idea of a computer program is associated 

with the notion of a cell, and a complex decentralized system expressed as 

the interaction of cells, the question of the origins of multicellularity 

becomes interesting to the field of Computer Science as well. 

A cell can be conceptually thought of as a simple program.  It receives input 

and gives output.  The input it receives can be environmental factors such as 

temperature, light, and surrounding chemicals.  It processes these inputs and 

provides output.  Output for a cell might consist of an action such as 

movement or mitosis, or the release of chemicals into the environment.  

Although the inputs and outputs might be different for a typical computer 
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program, the concept is really the same.   

A population of cells can be thought of as a collection of programs.  When 

the cells act together in some way without a leader, the collection of 

programs becomes a decentralized system.  There are no central controllers 

telling a cell what to do.  Each cell or program is created with an instruction 

set and acts according to those instructions.  Cells do not have to be 

connected to perform a global task.  For example, removing chemical waste 

from an area is a global task that could be performed by a group of cells.  

However, this is not necessarily emergent behavior since it can easily be 

predicted if it is known that a cell absorbs a certain chemical and produces a 

non-waste chemical in return.  The aggregated behavior of the cells is just a 

massively paralleled implementation of that cells program and the results 

are predictable. 

Multicelled organisms, however, perform tasks that the individual cells 

could not do in a smaller way on their own.  These systems have truly 

emergent behavior.  Learning how a cell and its program can be combined 

into a multicellular-like program could lead to learning how to build 

decentralized computer systems with emergent behavior.  This method of 

building a system would be considered a bottom-up approach, as opposed to 

the usual top-down approach taken in software development. 

The object of this research is to explore how multicellular-like functionality 

can emerge from single-celled programs.  This study can hopefully be a 

small step in the understanding of creating emergent systems.  Currently, 

the process of creating an emergent system is like putting a lot of ingredients 

into a pot, stirring it and seeing what happens.  Once a better understanding 
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of how this process can occur on its own, either in natural life or in artificial 

life systems, the controlling of the creation process to achieve certain results 

will be more feasible. 

2.2 Multicellularity In Nature 

This section provides a background for the research that is discussed later in 

the paper.  In order to learn about the simulation of multicelled organisms in 

an artificial ecology, it is helpful to first study how multicellularity might 

have originated in nature.  This section does not aim to propose any new 

ideas on the topic, or to describe it completely. Instead it offers a high level 

overview to the study and some of the ideas that might help recreate this 

behavior in simulation. 

2.2.1 A Brief History of Multicelled Organisms in Evolution 

Nobody knows exactly how multicelled organisms came into existence.  

There is proof however, that the event occurred at least three times during 

the course of evolution (Bonner, 2000), indicating that it was not an event 

that happened by chance. 

It took one billion years for the first cells to form.  Then after 3 billion years, 

the first metazoans came into existence.  (Taylor and Jefferson, 1995).  About 

540 million years ago, a huge diversity of multicellular life was created in a 

relatively short period of time.  Much of the diversity apparent in organisms 

today was created during this period.  This time is called the Cambrian 

Period and its events are often referred to as the Cambrian Explosion or 

Biology’s Big Bang.  During the Cambrian Explosions, massive extinctions 

and creative evolutionary changes occurred.  There is much controversy 
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surrounding the events in the Cambrian Period.  Research by Evans, 

Ripperdan, and Kirschvink (1998) has suggested that continental drift during 

this time created large-scale climatic changes.  Possibly the changes in 

environmental conditions are responsible for the enormous activity in 

evolution during this period (Kirschvink, Ripperdan, and Evans, 1997). 

2.2.2 Possible Explanations for the Origin of Multicelled Organisms 

There are many features of a multicelled organism that can seem 

advantageous to all of the cells cooperating within it.   It is in the move from 

cells that compete to cells that cooperate that the first multicellular 

organisms may have evolved (Bonner, 2000; Michod and Roze, 1999).  By 

being formed into a cooperative unit, the cells might have increased their 

collective fitness and increased their chances for survival.  Three possible 

properties that might have been important in the evolution of 

multicellularity are size, adhesiveness, and specialization. 

Size 

The benefits of size in the struggle for survival can often be intuitive.  One 

aspect to size in evolution is that there is always the opportunity to be larger 

than other members of the population.  The distinction of being the largest in 

a population is always at risk since a larger specimen might appear.  An 

example is given by Dawkins (1987) that the trees in a rainforest do not 

necessarily gain anything from just being tall.  However, they do benefit 

from being taller than the other trees in the forest.  They are evolving to 

become taller in order to compete for the sunlight.  Dawkins and Bonner 

both discuss the negative connotations of discussing size related to evolution 

in that size is often associated with ‘progress’. 
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Size may give a cell or group of cells several benefits.  It is possible that 

larger organisms can move faster, giving them an advantage at finding food.  

Cells that are able to use sunlight to produce energy could perhaps produce 

more energy when light is available.  In same way trees compete for sunlight 

by being tall, cells could have an advantage being larger and being able to 

monopolize resources.  This type of advantage could be applied to sunlight 

or the absorption of chemicals that are used to produce energy.  Size can also 

be a factor in that larger organisms are less likely to be candidates for 

predators.   Sometimes the prey is just too large to be eaten or swept into the 

mouth of a feeder.  All of these benefits might encourage cells to join 

together at some point in their existence or remain joined immediately after 

cell division.  

Adhesiveness 

The property of adhesion might be an explanation for the development of 

multicellularity.  A cell with an adhesive membrane would tend to stick to 

other cells.  If cells with that acquired adhesive membranes through 

mutations were more successful than others, that property could have been 

retained in the evolutionary process. 

Adhesion could provide several advantages to cells.  Cells with a sticky 

membrane could to attach to other cells by coming into contact with them or 

directly after cell division.  Size, as discussed above, can be advantageous to 

cells.  A group of attached cells could benefit from being a part of the larger 

group. 

It is possible that adhesion first provided a benefit to cells that adhered to 
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fixed objects.  Instead of being swept away with the current or wind, the 

cells were able to stay in one place.  These cells might be able to profit from 

staying in a fertile environment.  They also might be able to benefit from 

absorbing chemicals or other cells that pass by them.  This might be the 

primary reason for the evolution of adhesiveness.  The adherence to other 

cells could have been a useful long-term side effect. 

Specialization 

In a complex system, the components often take on specific roles or function.  

This can be witnessed in a multicellular organism as cell differentiation.  

Even though each cell has the same DNA, the cells perform a different role 

depending on where it is in the organism’s body.  The cells only express 

certain genes if their role requires it.  The chemicals that surround a cell 

determine its role.  A cell found in a human’s skin will be surrounded by 

different chemicals than a cell in a human’s heart.  When these cells are 

created, different genes are expressed based on where they are in the body 

because of the chemicals found in each environment. 

Specialization of cells may provide a benefit that helped evolve 

multicellularity.  Cells that are allowed to perform a specific task such as 

locomotion, energy absorption, or division might be able to perform those 

roles better than a general-purpose cell.  The increased efficiency provided 

by specialization might give the group of cells a competitive edge. 

2.2.3 An Example: Cellular Slime Molds 

Cellular Slime Molds (Dictyostelium discoideum) are one of the prime 

examples in nature available for the study of multicellularity (Bonner, 2000; 
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Johnson, 2001).  They are organisms that bridge the gap between single and 

multi-celled organisms.  The slime mold cells spend most of their life as 

single celled organisms.  Once the cells start to run out of a food source, they 

begin to aggregate together forming a slug-like creature.  In this form, the 

cells move together as a group towards a new area, which hopefully contains 

more sources of food.  After a new food source is found, the ‘slug’ forms a 

fruiting body and the cells return to living a single-celled life.  The cycle 

restarts when food sources again become scarce.  

For a long time it was assumed that the cells aggregated under the command 

of a leader cell (Bonner, 2000).  It was thought the leader cell would signal 

the other cells and organize them into forming the collective organism.  It 

was later discovered by Keller and Segel (1970) in their study of slime mold 

chemotaxis that the cells had no leader.  Once some cells started to run out 

of their energy supply, they would begin signaling other cells around them.  

This set off a chain reaction that caused all of the cells in the area to begin 

signaling.  The cells followed the gradient of the signal, a chemical cyclic 

AMP (cAMP) signal, and would thus all move towards gathering points of 

highest concentrations.  This movement is known as chemotaxis.   

The cell-cell interaction shown in signaling with cAMP signaling is a clue to 

how cells can communicate and form a cooperative group.  Their behavior 

shows an example of how the development of multicelled organisms can 

occur in nature.  The ability to form a slug-like creature allows the cells to 

move rapidly to a possibly more resource-rich environment.   
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2.3 Artificial Life 

2.3.1 A Brief Introduction to Artificial Life 

At the time this paper was written, the web site for the International Society 

for Artificial Life at http://www.alife.org had a survey posted.  The question 

was “What is ALife”.  Six possible answers were available as responses in a 

multiple-choice format.  The list of choices were:  

a. Life as it could be 

b. Life made by man 

c. Synthetic biology 

d. Recreating Life from scratch 

e. Understanding biology 

f. A cool scientific topic 

So far only 70 votes were cast, but all of the choices had a decent proportion 

of the vote with (a) and (b) slightly in the lead.  One might argue that the 

survey wasn’t quite fair because all of the choices could be argued to be 

correct.  From the perspective of each participant, the correct answer might 

have been whichever most applied to his or her field or interest.  Many 

visitors to the site might also have been disappointed by a lack of a correct, 

or relevant, answer for them.  The question “What is Artificial Life” might 

only be correctly addressed by acknowledging that it is a multidisciplinary 

field.  There is interest from biologists, computer scientists, mathematics and 

physics researchers, economists, linguists (Wheeler, Bullock, et. al, 2002) and 
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others.  Each of these parties has different goals that they wish to accomplish 

through studying Artificial Life (ALife). 

Even though there is a broad range of motivations for studying Artificial 

Life, it is still helpful to state a definition.  A first definition is given by Chris 

Langton, an important researcher in the field and known to be the first 

person to use the term ‘Artificial Life’:  

"Artificial Life is a field of study devoted to understanding life 

by attempting to abstract the fundamental dynamical principles 

underlying biological phenomena, and recreating these 

dynamics in other physical media -- such as computers -- 

making them accessible to new kinds of experimental 

manipulation and testing. (Langton, 1992) 

A second definition is given by T. S. Ray, the creator of the Tierra Simulator: 

"Artificial Life (AL) is the enterprise of understanding biology 

by constructing biological phenomena out of artificial 

components, rather than breaking natural life forms down into 

their component parts. It is the synthetic rather than the 

reductionist approach."  (Ray, 1994) 

Ray’s definition takes the approach of using ALife as a way to study biology.  

However, his Tierra Simulator is used to study the possible uses of Artificial 

Life to help in the building of parallel processing applications in computers.  

Langton’s definition is less specific and is not restricted to the study of 

biology.  He discusses the use of computers but does not make them a 

prerequisite (Von Neumann’s work, which is now considered part of ALife, 
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was done without the use of any computers).  He emphasizes the ‘dynamical 

principles underlying biological phenomena’.  This phenomena is closely 

linked with the discussions of emergence in the previous sections of this 

report.  He said, “Emergent behavior is one of the fundamental 

characteristics of an ALife system”.  (Langton, 1989) 

2.3.2 Previous Work in ALife and Evolving Multicellularity 

Although Artificial Life is a relatively new field, there have been a large 

number of implementations.  A simple search on the Internet will return a 

seemingly endless amount of programs and papers related to the field.  It 

can become difficult to sort through all of the sites to find specific 

simulations that are of interest, so it was necessary to limit the search.  Given 

the topic of this research, the following areas were investigated to find 

relevant implementations: 

1. Emergent and cellular computation 

2. Multicellular development 

3. Programming for the control of autonomous agents 

Artificial Life and the idea of computing with cells can be traced back to the 

work of John von Neumann in the 1940’s.  He worked with Cellular 

Automata, which can be explained as a collection of cells whose state 

depends on the states of its neighbors.   As a result of each cell’s local 

behavior, global behavior starts to emerge.  Cellular Automata was 

popularized by John Conway’s Game of Life (Berlekamp, Conway and Guy, 

1985).  This program made experiments easy to perform with different 
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patterns resulting in emergent behavior such as ‘gliders’ that would move 

across the screen.  Grammar-based Lindenmayer Systems (L-Systems) have 

been used to model plant growth and other forms of development such as 

neural network development and cell development (Lindenmayer, 1968). 

In 1952, Turing created a mathematical model of cell morphogenesis in 

which cell’s interact via chemical substances, or morphogens.  He introduced 

reaction-diffusion systems that help to explain cell differentiation and 

pattern formation in development (Turing, 1952).  The slime mold 

chemotaxis models created by Keller and Segel (1970) used the reaction-

diffusion equations of Turing. 

Fleischer and Barr (1992) have created developmental models “for the long 

range goal to create artificial neural networks to solve problems in 

perception and control”.  They have also applied their models of 

morphogenesis to the creation of computer graphics. 

The study of flocking behavior is a well-known implementation of Artificial 

Life.  Reynold’s program, Boids (1987), showed how the seemingly complex 

flocking behavior of birds can be implemented using the simple local rules 

of separation, alignment and cohesion.  This success is useful to computer 

graphics and has been used in generating computer animation sequences for 

movies. 

The following are some packages and toolkits that have been created to 

promote the study of emergence and agent-based programs: 
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StarLogo 

StarLogo is the creation of Mitchell Resnick (1994) of the Epistemology and 

Learning Group in the Media Laboratory at the Massachusetts Institute of 

Technology.  This is a language based on the Logo programming language 

from the 1960’s.  Logo was a language that made computer programming 

accessible to children and non-programmers.  The language allowed for the 

control of ‘turtles’ that would drag a virtual pen across the screen and create 

graphics.  Resnick extended the idea of this language so that the programs 

could control multiple turtles at once.  The turtles each acted as agents, or 

autonomous programs, that would interact.  StarLogo was used to study the 

ideas of decentralized systems and the ‘decentralized mindset’ of people.  

Resnick spent a lot of time working with children in schools implementing 

new systems and noting the assumptions and observations of the children.  

Some of the systems modeled using StarLogo were traffic jams, forest fires, 

and cellular slime molds. 

The slime mold implementation in StarLogo consisted of a population of 

turtles representing slime mold cells.  The cells would move around in the 

artificial StarLogo world and aggregate as a result of their programs and 

some randomness.  The logic behind the cell’s program was very simple.  

Each cell released a constant amount of a cyclic AMP-like signal.  The cells 

would ‘sniff’ straight ahead, 45 degrees to the right, and 45 degrees to the 

left and then move towards the strongest concentration of the signal.  The 

population was initialized with cells created in random locations.  After a 

few time-steps the cells would start to move towards each other, forming 

something similar to the multicelled organisms that occur naturally with 
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slime molds.   

This StarLogo Slime Mold simulation has been recreated in Java as a part of 

this research.  It provided a basis for exploring multicellularity and a good 

way to test the environment before evolving more complex cells. 

Swarm 

Members of the Santa Fe Institute in New Mexico have created a 

development tool called Swarm (Burkhart, 1994).  It is described by the 

Swarm Development Group as: 

“Swarm is a software package for multi-agent simulation of 

complex systems, originally developed at the Santa Fe Institute. 

Swarm is intended to be a useful tool for researchers in a 

variety of disciplines. The basic architecture of Swarm is the 

simulation of collections of concurrently interacting agents: 

with this architecture, we can implement a large variety of 

agent based models” 

This development toolkit supports the Objective C and Java 

programming languages.  The kit is very well documented and has 

been used to implement models of termites, ‘heatbugs’, and social 

dynamics. 

The Cell Programming Language 

Work was performed by Pankaj Agarwal (1995) who implemented a 

language called the Cell Programming Language (CPL).  Agarwal used CPL 

to create cell-based computer models for the study of developmental 
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biology.  He used the language to model slime molds aggregation, limb 

skeleton formation, and sponge reconstitution.  This work modeled cell 

behavior and development but did not use evolution to generate the cell 

genotypes in simulations.  Cells existed in grid locations and executed 

functions in discrete time steps. 
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3 Experiment 

3.1 Goal of Experiments 

The goal of the experiments was to study the ways in which multicelled 

organisms can emerge in an Artificial Life setting.  The motivation for 

studying this is that it may contribute to the much larger goal of 

understanding emergent behavior, including its evolution, and computation 

made possible by it. 

The plan for these experiments was to create an artificial world in which 

cells struggle for survival.  The cells are controlled by the expression of their 

genes, so a cell’s genes determine a cell’s actions and how successful it is 

going to be in its environment. 

The final goal is the creation of an evolving population of cells that 

demonstrate success by survival.  Survival is defined not by the age that a 

cell reaches, but by the length of time that a cell’s family tree survives.   

As the program construction was being designed, several milestones were 

planned.  Each milestone consisted of a sub-experiment that might provide 

interesting results while at the same time provide a useful checkpoint for the 

program development.  This allowed for the monitoring of progress during 

the lifecycle of the research project. 

3.2 Overview of Phases 

Slime Mold Simulation 

A logical first step in the study of Multicellularity is the simulation of 
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Cellular Slime Molds.  This was also a convenient first step in the 

development of the program since it required that a program architecture, 

user interface and objects be built, but did not require any evolution or 

genome descriptions.  Instead the simulation used hard coded rules that 

each cell follows.  At a high level, all cells release a signal and are attracted 

to the highest concentration of that signal.  The signals are a chemical that is 

diffused in the environment. 

Basic Symbiotic Relationship between cells 

The next step for the program was including the ability to have multiple 

types of cells, each with their own chemical requirements and signals.  This 

experiment showed how different cell types can work together in a 

symbiotic-like relationship.  In some ways, this could also be seen as a 

demonstration of differentiation since the cells behave differently according 

the chemical around them. 

Introduce Survival Criteria for cells 

Once the program included functionality to display cells and chemicals in 

the environment and the management of cell-cell interactions, the next step 

in the program development was the introduction of cell health and survival 

requirements.  Cells require a chemical in order to produce energy.  Their 

energy is decreased each time step with additional amounts deducted for 

movement.  If a cell is not able to find the chemical that it needs for energy 

production, it will die.  Cell division was also created during this phase. 

Evolving Cell Functionality 

The final phase of the research experiments is the evolution of cells.  This 
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phase build upon the previous experiments.  New functionality added in 

this phase is the creation of the cell genotype and it’s resulting phenotype. 

Cell division includes possible mutations, which make the population 

change and hopefully improve over time. 

3.3 Implementation Details 

3.3.1 Choice of Java vs. Other Languages and Packages 

Java was chosen as the implementation language because of the ease of 

graphically depicting cell activity.  Displaying a population graphically is 

not critical for the program to be able to control cells and chemicals.  It 

would be possible to just print out a log of each cell’s actions, coordinates, 

and statistics.  However, it would be very difficult to witness emergent 

behavior at a global level without being able to view the interactions of the 

cells.  Performance is a concern with Java.  In order to improve performance, 

the graphic display of program activity can be temporarily suppressed. 

Some of the packages described in previous sections such as Swarm and 

StarLogo were considered.  However, the ability to design and develop an 

implementation from scratch was considered a valuable experience.  Also, 

since the duration of the project was relatively short, it was considered a risk 

to begin using a package without having an appropriate amount of time to 

study its limitations beforehand. 

3.3.2 Summary of Classes and Objects in the Program 

With the intent of creating a flexible program that can be used for future 

experiments, the design of the program was kept as simple as possible.  

There is one class that manages the user interface, one overall class that 
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controls the artificial world’s time steps and a few classes that control the 

objects in the program.  The classes are outlined below with a brief 

description.  For more information, see the API documentation in the 

Appendix. 

NWPanel is a class that controls the user interface of the program.  This class 

is an extension of the Java Applet class.  The main functions of the class are 

to receive input from the associated applet and to call the application.  The 

application is called when a thread should be started, paused, resumed or 

stopped.  Also, the program parameters that are accessible from the applet 

may be changed and a method must be called in the application to change 

these values if they are modified. 

NWWorld is a class that controls the overall execution of the Artificial 

World.  This class is constructed when the simulation is started from the 

applet.  When this happens, a thread is started.  Once a thread is operating, 

this class creates all of the objects in the environment such as the chemicals 

and cell populations.  Time steps are executed which makes calls to each of 

the objects.  The NWWorld class also controls the painting of the graphical 

display of the artificial world. 

The Cell class allows for the creation of individual cells in a population.  

Cells can be created at random or specific positions.  They can also be 

created as a result of cell division, in which case they inherit the genes from 

their parent with possible mutations.  If a cell is created from scratch, then 

the cell’s genotype is randomly created.  The cell class has methods that 

control the cell’s movements, energy management, and sensing of its 

surroundings. 
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CellPopulation is a class that manages a population of individual cells.  This 

class creates a population, calls each cell in the population when a time step 

should be executed, and manages the death of a cell if it has run out of 

energy.  This class also controls the printing of cell descriptions and 

statistics. 

The Chemical class is used to construct an object for each substance in the 

environment.  A chemical object is created that describes how much of the 

chemical is present in each location of a two by two grid.  There are methods 

available for adding amounts of the chemical to a location (e.g., when cells 

release the chemical or a mouse click on the applet is used to insert 

chemicals).  Chemical levels are reduced through diffusion occurring at each 

time step and by the absorption of the chemical by a cell. 

3.4 Non-Evolving Experiments 

3.4.1 Slime Mold Experiment 

Overview 

The purpose of the Slime Mold experiment was to observe the aggregation 

behavior of simple cells and see how they could function as a more complex 

individual.  As described in the earlier section on Slime Molds, the cells 

spend most of their life as single celled organisms.  When they are close to 

running out of energy and need more food sources, they begin to signal each 

other and join to form a multicelled organism.  The slug-like organism is 

then able to move rapidly, delivering the cells to a new area where food 

might be available.  The experiment performed here focuses on this 

aggregation phase. 
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Other than observing slime mold behavior, a second reason for performing 

the Slime Mold experiment was that the functionality required for Slime 

Mold simulations was also needed as a base for the following experiments.  

Thus the experiment provided an appropriate milestone to manage project 

status and ensure that the environment and graphical capabilities of the 

program were on track. 

The functional requirements necessary for the Slime Mold experiment were: 

1. Applet and User Interface for program control 

2. Chemical and Cell Objects 

3. Diffusion of chemicals 

4. Cell Movement 

5. Display of the 2D grid environment 

6. Display of chemicals and cells 

7. Management of time (program threading) 

Experiment Setup 

Two different strategies for cell movement were used in the creation of the 

Slime Mold experiment.  The first strategy allowed the cells to decide their 

movements based on the gradient of the signaling chemical.  The cell was 

allowed to move directly towards that gradient.  This cell movement 

strategy shared some similarities with cells that move with cilia. 

The second method for cell movement was designed using polarity for cells.  
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This type of cell movement was more like cells that have flagella.  Instead of 

being able to move directly towards a gradient, the cells were given the 

freedom to move forward while turning a certain degree to the right or left.  

These cells were also restricted in the way they read the chemical strength in 

the environment.  Instead of being able to directly interpret the gradient of 

the signaling chemical, they were only able to sense the amount of chemical 

present straight ahead, 45 degrees to the right and 45 degrees to the left.  The 

cell would then choose to move towards the direction with the strongest 

concentration of the chemical. 

The second setup described followed a design similar to Resnick’s StarLogo 

implementation (1994).  Even though the eventual evolutionary and genetic 

programming aspects of this experiment would be very different then the 

StarLogo implementation, the functionality of this first experiment matched 

StarLogo well.  Although the design of cell functionality was similar, the 

results were expected to be different since the underlying programs 

controlling the cells were different.  Also, the StarLogo programming 

language created an abstraction level, which restricted the understanding of 

what functions were doing at a detailed level. 

In the StarLogo experiment, cells were created with polarity.  They sniffed 

ahead straight and to the right and left and moved towards the strongest 

concentration.  A random component to cell movement was also added so 

that the cells would not always move directly towards the strongest signal.  

After sniffing and determining how a cell would turn, randomness was 

added.  The direction in degrees was increased by a random number 

between zero and 40 and then decreased by a random number between zero 
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and 40.  The resulting random change averaged zero.  The random 

movement component was similar to that used in StarLogo. 

Results 

Once the control functions of the slime mold cells were programmed, the 

program was executed and observed.  As hoped, the cells began to aggregate 

in a manner similar to real cellular slime mold.  One difference between this 

simulation and real life was that the cells did not follow a spiraling path 

during aggregation.  This result was similar to that of the StarLogo 

experiment and can possibly be explained by the constant signaling of the 

cells.  In real life, the cells emit a signal pulse instead of a constant amount.  

This may affect the motion of the cells that are following the gradient of the 

signal. 

A population of cells was created by the initiation of the program.  Cells 

were created in evenly distributed random locations throughout the grid.    

Within a few time steps, it was possible to observe the cells beginning to join 

together in groups.  After several more time steps, most of the cells had 

found groups.  Due to the random element in the cell movements, cells 

occasionally jumped out of the groups and would appear to be exploring.  

Sometimes the cells would simply turn around and rejoin the group.  

However, if another group was nearby, the cell might join that group.  An 

interesting effect of the exploration of cells was that the cell would 

occasionally pull two groups together.  Small movements of other cells 

caused this.  If a single cell that had temporarily left its group came near a 

second group, a couple of cells in the second group might be near its edge 

and be attracted to the wandering cell.  They might move slightly toward 
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that cell and attract other members of the second group to do the same.  The 

small movements received positive reinforcement, which eventually caused 

the entire second group to move towards the first group.  In the end the 

groups of cells would be merged together forming one cluster of cells.   

The same effect was possible for divisions of groups.  Sometimes a 

wandering cell took other cells with it.  In some cases, the movement of 

those cells carried a momentum strong enough to split the original group in 

two. 

 

Figure 1: Slime Mold with 45 Degrees of Movement (500 Cells) 

Analysis of parameter settings 

Population Size 

Several population sizes were tried to see if the number of cells had an effect 

on cell behavior.  These experiments were carried out with cells that have 

polarity and which were limited to turns up to 45 degrees.  Very small 
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population sizes, e.g. ten cells, had a harder time finding other cells with 

which to join.  Eventually the cells in these populations would find others 

and form small groups. 

Sometimes these cells would end up ‘following their tails’ since they were 

attracted to their own signal.  However, since the cells had polarity and 

could only turn at a certain degree, each cell’s signal was only present 

behind it.  A cell would have to turn back towards where it had just been in 

order to sense it’s own signal.  Due to the random component of cell 

movement, this situation did occur often.  The randomness also ensured that 

the cells did not always get stuck following their own signal.  Eventually, 

cells came across other cells and would begin to follow each other, almost as 

if chasing the other cells.  Cells eventually found larger and larger groups.  

The population never completely stabilized.  Groups of cells would form, 

exist for a while and then split off into new groups.  The signals from the 

cells were diffused far enough into the environment to attract the cells into 

forming one cell group. 

Larger populations of cells (e.g., 100 or 500) found groups much faster.  The 

groups formed were also larger since greater amounts of the signaling 

chemical could be concentrated in certain areas.  Just as with smaller 

populations though, the cell groups would continue to drift, break apart, 

and form new groups.  The state of the population was constantly changing. 

When populations of size 1000 or greater were used, the cells would form 

similar patterns.  However, the concentration of chemicals became so great 

that the majority of the environment had a relatively high amount of the 

chemical.  Since the cells followed the greatest concentration of chemicals 
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though, the patterns formed by the cells themselves were roughly the same 

as with smaller population sizes. 

Polarity and Random Movement  

As described in the setup detail, two methods of cell movement were tested.  

The first method resembled cells with cilia.  These cells had no polarity and 

could directly follow the gradient of a chemical.  The second method tested 

used was closer to cells with flagella.  These cells had polarity and could 

only move ahead straight or in a certain range of degrees. 

Cells that were allowed to move in any direction exhibited the behavior that 

was expected.  They quickly moved toward each other and formed groups.  

Random movements had little effect in their overall behavior.  The problem 

encountered with this experiment was that collision detection had not yet 

been implemented in the program so the cells would all eventually occupy 

the same point on the 2D grid. 

When polarity and limited turning was introduced, the behavior of the cells 

became much more interesting and life-like.  Cells would move toward each 

other and would have to keep moving past each other.  They would usually 

turn around and pass each other again or form a circular or figure eight type 

of pattern.  Randomness made sure that the patterns changed over time.  

These cells could only move forward.  They could either move straight 

ahead or forward to the left or right.  With this control rule in place, the cells 

never stopped moving.  Once groups of cells formed, the cells would 

continue to move around inside the group. 

Each cell maintained it’s current direction as a local variable. Usually during 
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the experiments, the cells moved one step forward in the direction they 

started in plus an amount to turn: negative 45, 0, or positive 45 degrees.  The 

random component would then be added after the cell decided the turning 

amount.  When smaller degrees of freedom were given to the cell, the 

behavior was much more erratic.  With 20 degrees of freedom allowed, cells 

would still form into groups.  However, since cells could not turn around to 

rejoin the group as easily as it could when it was allowed 45 degree turns, 

the cell would continue past the group and then rejoin after making a wide 

turn.  This had less effect when the cell groups were larger and the cells 

could still turn while close to the group.  However, smaller sized groups 

would take on a spider shape as cells passed through them and rejoined or 

continued on to find other groups.  This behavior resulted in much more 

exploration by the cells and eventually resulted in less groups being formed 

overall with larger group sizes.  Populations of 100 or more cells tended to 

eventually form a single group with occasional cells wandering away and 

rejoining again after a while.  Figure 2 shows an example of this behavior. 
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Figure 2: Slime Mold with 20 Degrees of Movement Allowed (200 Cells) 

When small population sizes were used in combination with limiting the 

cell’s turning ability, the cells did not form into groups as easily.  This was 

probably because they could not form a critical mass of chemical significant 

enough to attract each other.  Their turning radius was too large for this. 

It was interesting to observe that some cells would orbit around groups.  The 

cells would then be constantly turning towards the group, but only at the 

turning degree allowed so it would never turn enough to enter the cluster.  

This behavior was rare since both the group size and turning radius had to 

be in the right proportion.  The random behavior of the cells prohibited this 

from happening for a long period of time.  Another interesting pattern were 

cells that formed a large ring.  Multiple cells followed each other forming a 

ring of five or six cells that all followed each other. 

Cells that were given the ability to move with a wider turning radius than 45 

degrees were able to be much more responsive to the chemical gradients.  
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Turning amounts of up to 90 degrees were allowed.  Smaller clusters of cells 

resulted from this setting.  Since the cells would form small groups and 

could turn quickly enough to stay in the groups, the cells performed little 

exploration.  For this reason, the cells tended to stay in many small groups. 

3.4.2 Symbiotic and Survival Criteria Experiments 

Two additional mini-experiments were carried out as milestones before the 

evolving experiments were begun.  These experiments provided a chance to 

test that the program’s functionality was working correctly during 

development. 

 

Figure 3: Symbiotic Relationship (500 Cells / Population) 

Symbiotic Relationships 

The first experiment consisted of creating two populations that were 

attracted to each other’s output chemical.  This resulted in a symbiotic-like 

relationship between the two cells.  The cells in both populations were 
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created in random positions.  After a few time steps, the cells would begin to 

move towards the other population creating symbiotic groups of cells.  A 

screen capture of this behavior is shown in Figure 3. 

The additional functional requirements necessary for the symbiotic 

experiments: 

1. Management of multiple populations of cells 

2. Parameterization of each cell’s chemical requirements and emission 

3. Management of multiple chemicals in the environment 

Survival Criteria 

The second mini-experiment in this phase was testing the functionality of 

survival criteria.  For this experiment to be run, cells needed to have a 

quantity of energy that decreased over time.  Cells were given the ability to 

absorb chemicals around them to increase their energy level.  Once chemical 

amounts were absorbed, it was removed from the environment.  This created 

a competition for resources among the cells.  If a cell was not able to 

maintain an energy level above zero, it was considered dead and was 

removed from the population. 

Cell division was also implemented for these tests.  When the tests were 

executed, the cell populations would often die out quickly or explode, 

reaching large numbers.  It was hard to properly balance the amount of 

energy resources available in order to achieve a stable population.  A 

maximum and minimum population constraint had to be created in the 

program in order to control population size.  If the population fell below a 
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certain level, new cells would be randomly added.  If the population reached 

the maximum, no more cell division would be allowed. 

If two symbiotic populations were used in conjunction with cell division, the 

population would often grow too quickly.  This is because the cells had a 

variable energy supply—dependent only on the size of the other population.  

Population sizes were much more stable once a limited amount of energy 

was available in the environment.  This was implemented by creating 

random energy sources that would last for a period of time and then run out.  

Usually one or two energy supplies were available in the environment at the 

same time. 

The functional requirements for cell survival experiments: 

1. Energy tracking 

2. Energy decreasing at each time step 

3. Cell death 

4. Population size management 

5. Energy sources 

6. Cell division 

7. Collision detection 
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3.5 Evolving Multicellular Experiments  

In the previous non-evolving experiments, it was shown that very simple 

cells could produce interesting behavior when combined together in an 

environment.  They joined together into groups, rings, and other patterns 

and in the final experiment either died or survived based on this behavior.  

One lesson learned in the experiment that contained survival criteria was 

that it was hard to find a balance between cell rules, population size, and the 

survival requirements.  Either the environment was too challenging and all 

of the cells died off, or too easy and populations had no problem surviving.  

When the balance of the environment was right and cells only survived if 

their control rules were appropriate, then more interesting behavior 

emerged.  But explicitly programming a complex system like this was 

difficult. 

The goal of the evolving experiment was to try to automate this 

programming.  If cell control rules could be evolved, then achieving 

appropriate cell interactions and emergent behavior could occur in a more 

natural way.  Whereas it was hard to force emergence, the goal of this 

experiment was to see if it could occur by itself.  In this setting, the study of 

multicellular activity and self-organization of cells could hopefully be 

observed. 

The requirements for creating an evolving population of cells needed to be 

identified.  The following sections describe the inputs that each cell needs 

from its environment.  The functions available to each cell are also described.  

Once cells are defined by their inputs and outputs (i.e., actions), the 
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representation that describes the cell genotype must be defined.   In these 

experiments, a form of genetic programming was used called Cartesian 

Genetic Programming (CGP).  This method will be described in the 

following sections. 

The additional functional requirements necessary for the evolving 

experiment were: 

1. CGP genotype creation 

2. CGP phenotype decoding 

3. Cell division 

4. Mutation operators 

5. Absorption of a chemical (food) by a cell, decreasing the level of the 

chemical in the location of the cell 

6. Ability to select a cell using the mouse to view its phenotype 

7. Ability to trace the energy level and chemical inputs for a selected cell 

over time 

8. Printing the phenotypes and statistics of the entire cell population 

9. Additional controls and modifiable parameters on the user interface 

10. Ability to turn graphics on and off to improve performance 

11. Local variables for lower and upper energy thresholds 
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3.5.1 Cell Inputs 

Cells need to be able to decide their actions with a realistic knowledge of 

their environment.  Real cells do not know anything about their location or 

the activities of other cells outside of their immediate area.  If they are part 

of an emergent complex system, they do not understand their role in it.  

Instead, they only know what they do, which is based on their surroundings 

and have no idea of their action’s impacts on the greater population.  It is 

therefore important to decide what inputs the cells will receive from their 

environment.  The hope is that these inputs will be realistically limited and 

at the same time provide adequate information for the cells to decide their 

actions. 

External Inputs 

The cells in this experiment are not able to see or feel anything.  The only 

external input that they have is the level of chemicals present around them.  

This is similar to nature in the way that cells absorb chemicals.  A cell 

directly absorbs some chemicals through its membrane.  Other chemicals do 

not get absorbed immediately through a cell’s membrane but are instead 

limited by receptors on the cell’s exterior.  Receptors work as a threshold 

function that only allows chemicals to be absorbed once a high enough 

concentration of the chemical has been collected by the receptor.  The cell 

can base its actions on the level of chemicals absorbed from its environment.  

Since a cell cannot see or feel a neighbor cell, it only knows of its neighbors 

by the chemical signaling from the cells around it. 

A cell can sense different types of chemicals from the environment.  The 
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types of chemicals are the signals from other cells, waste from cells, and 

chemicals that a cell needs to produce energy. 

Internal Inputs 

The cells in this experiment also have internal inputs.  The cells know what 

their current energy level is and how old they are.  This type of information 

is useful when a cell determines whether or not it should divide. 

3.5.2 Cell Functions 

One of the goals of this experiment was to explore the possibilities of 

emergent behavior and multicellular functions based on combined actions of 

very simple units.  Although the behavior exhibited as a group may be 

complex, the actions of individual units should not be.  Therefore, a simple 

set of functions was given to the cells.  The idea was to give the cells a 

limited set of actions, but not so limited that surprising actions would not be 

possible. 

The set of actions available to a cell is given below.  In a single time step, the 

actions are mutually exclusive with the exception of signaling.  This means 

that a cell cannot move and divide at the same time.  A cell can, however, 

signal and perform other actions at the same time. 

Cell Movement 

One basic function of a cell is movement.  The cells receives its inputs from 

its surrounding and can choose to move or not move based on those inputs.  

A simple way to describe cell movement was desired so that it would be 

easy to represent in a genotype.  Instead of enabling a cell to move left, right 
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straight, turn around, etc., it was decided that cells would only be able to 

move towards or away from chemicals.  In biology, this is called chemotaxis.  

Using this kind of movement allowed for simple representation and at the 

same time kept the experiment close to the way cells behave in nature. 

Cell Division 

Cells also have the ability to divide.  Once a cell divides, the cell itself no 

longer exists.  Instead, two offspring are created.  The offspring each have 

half of the energy of the original cell minus an energy cost for the division 

process.  The offspring inherit the genes of the parent cell plus some possible 

mutation. 

Chemical Signaling 

Cells have the ability to emit a chemical into the environment.  This action 

gives the cell a way to communicate with other cells in a population.  An 

example of signaling is seen in Cellular Slime Molds when they use cyclic 

AMP signals during their aggregation phase.  When a cell emits a signal, it is 

still able to perform the other actions listed above.  

3.5.3 Survival Criteria and Fitness Evaluation 

A cell’s fitness is not measured explicitly during the program execution.  

Instead, the ability to survive is the measurement of fitness.  The length of an 

individual’s lifespan often describes how successful an individual is at 

survival.  Another way to describe fitness based on survival is not the length 

of the individual’s life, but the time period during which a cell’s family DNA 

survives.  In this scenario, the only thing of importance is the ability of a cell 

to pass on its DNA to the next generation.  This is the definition of fitness 
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taken for the experiments here. 

A cell will survive as long as it has energy.  Since energy must be sourced 

from chemicals in the environment, a cell must either be positioned near an 

energy source, or move towards it.  The balancing of incoming energy and 

expenditures of energy (e.g., division and movement) is required for a cell to 

survive.   

3.5.4 Cartesian Genetic Programming 

In this section, a brief introduction to Cartesian Genetic Programming (CGP) 

is given.  The paper (Miller and Thomson, 2000) should be referenced for 

more details on the topic.   

In order to control the actions of the cells, some form of instruction must be 

encoded to serve as the cell’s genotype.  While Neural Networks and other 

types of Machine Learning techniques were considered, it was decided that 

some form of Genetic Programming (GP) would be best suited for this 

experiment.  This would allow a direct encoding of the inputs and actions to 

be taken by the cells into the cells genotypes.  Since the cells would not be 

learning during their lifetime some advantages of other Machine Learning 

representations (e.g., learning ability of Neural Networks) would not be 

helpful. 

Genetic Programming is a method of combining functions and terminals so 

that programs can be randomly generated and evolved.  Most 

implementations of GP, for example the type of GP described by Koza, 

creates its representation as a parse tree.  This can also be represented as a 

string that resembles LISP programming language syntax.  This type of 
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Genetic Programming has been proven effective in many applications (Koza, 

1992) such as digital circuit design, pattern recognition, and other tasks.  

Tree-based genetic programming has proven to be a powerful method of 

evolving programs.  Some drawbacks to this technique are that the use 

operators such as crossover and mutations can be difficult to employ.  In 

some cases, the tree must be repaired after operations have been performed.  

The parse-tree representation also often leads to a one to one relationship 

between the genotype and the phenotype. 

Cartesian Genetic Programming (Miller and Thomson, 2000) shares some 

similarities to the GP techniques described.  However, the CGP genotype is 

formed by a directed graph instead of being tree based.  In this 

representation, a string of numbers is used to represent a fixed length 

genome.  However, the mapping from the genotype to the phenotype is not 

one to one, which results in a variable length phenotype.  One benefit of this 

is that the genotypes in members of the populations can be different, 

although the phenotypes of those individuals are the same.  The mapping of 

the genotype allows for a high degree of diversity of the genotype among 

equally fit individuals.  This permits a much greater search space from 

crossover and mutation operations in a single generation. 

As described in (Miller and Thomson, 2000), the redundancy inherent in 

CGP allows for neutrality, the genotypic diversity of equally fit phenotypes.  

Three forms of redundancy are described: node, functional, and input 

redundancy.  Node redundancy consists of nodes existing in the genotype 

that are not part of the phenotype.  Functional redundancy is the repetition 

of parts of the program and causes bloat.  Input redundancy is when some of 
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the inputs to the program are not connected to functions.  Redundancy is 

thought to be a useful property during the evolutionary process by 

promoting diversity in the population. 

Typically a genotype in CGP consists of a series of nodes.  The nodes are 

connected to other nodes forming a graph.  The genotype can be described as 

a series of columns with multiple rows or as a single row.  In this research a 

single row CGP representation was used. 

In the paper (Miller and Thomson, 2000), a detailed example is described 

using Cartesian Genetic Programming to solve the Santa Fe Ant Trail 

problem and to solve for a sixth order polynomial function.  The use of 

representations in CGP was adapted for this research.  An example of this is 

given in the next section. 

3.5.5 Chromosomes – Representation 

Explanation of Genotype Representation 

The representation used for this CGP implementation consisted of functions 

and inputs.  However, the inputs to the genotype were not represented as 

nodes as in typical CGP programs.  Instead all of the nodes in the genotype 

represent a function.  

As in standard CGP, the genome consists of a number of genes that are 

linked together to form a graph.  The right-most gene is executed first.  

Starting from the right, the genes are linked to any cell on the left.  The last 

node processed is always set to the function ‘do nothing’.  During the 

decoding of the phenotype, if no action has been reached while traversing 

the graph of genes, then eventually the right-most node will be called.  In 
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that case, there will be no action for the cell.  As larger sizes of fixed length 

genotypes are used, this case occurs less frequently. 

Each node, or gene, consists of an array of four numbers.  The numbers 

respectively represent the function number, an external input, and two 

connections inputs.  Note that examples given in (Miller and Thomson, 2000) 

are in a different order with the function in the last position.  The 

representation of a single gene is shown in Figure 4. 

(1) Function

(2) External Input

(3) Connection 1

(4) Connection 2

Node number(1) Function

(2) External Input

(3) Connection 1

(4) Connection 2

Node number

 

Figure 4: A Single Node in the CGP Representation 

The first part of the gene contains the function, marked as (1).  The functions 

are linked to the remaining positions in the gene during the decoding of the 

phenotype.  Below is a list of the functions used in the creation of the 

genotype.  In the list, each number in parenthesis refers to a position in the 

array of the four numbers making up the gene. 
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0. Do nothing

1. Move towards (2)

2. Move away from (2)

3. If (2) is present do (3), else do (4)

4. If (2) is present do (4), else do (3)

5. If energy is above UPPER_THRESHOLD 
do (3), else do (4)

6. If energy is below LOWER_THRESHOLD 
do (3), else do (4)

7. Perform (3) then divide

8. Perform (3) then release chemical signal

 

Figure 5: Function used in CGP Representation 

The second position in the gene refers to the external input (2).  This is an 

array of elements from the cell’s environment.  In this implementation, the 

external inputs are a list of chemicals.  The number zero represents 

“Chemical A” and the number one represents “Chemical B”.  Chemical A 

serves as food for the cell population, and Chemical B is what is released as a 

chemical signal by the cells.  This is true for the main population of cells.  

Other populations are possible that have different uses for the chemicals.  If 

function 1 is called, the value of the external input in (2) is evaluated.  If the 

value is zero, the cell moves towards Chemical A.  If the value is one, the cell 

moves toward Chemical B. 

Functions 3-8 use the values in the third and fourth positions on the gene.  
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These positions store links to other genes.  If function 7 is called for example, 

the cell will decode and perform the instructions in the gene referenced in 

position  (3) in the array of the current gene.  Then the cell will perform cell 

division.  Function 8 operates in the same manner except that it instructs the 

cell to signal instead of divide. 

Functions 3 and 4 are IF statements that depend on the presence of the 

chemical identified by the external input in position (2).  Presence is a 

Boolean value determined by the level of the chemical in the x, y coordinate 

occupied by the cell.  This is currently a fixed threshold shared by all cells.  

In future implementations, this could be made a local variable that is subject 

to mutation.  This would have the effect of evolving the cell’s membrane, 

making cells more or not as sensitive to the chemicals in their environment. 

The variables UPPER_THRESHOLD and LOWER_THRESHOLD used in 

functions 5 and 6 are local variables of each cell.  This permits each cell to 

have different threshold limits that control its actions.  The values for these 

variables are created randomly for each cell.  These values are not encoded 

in the CGP string, but can be considered part of the cell’s genotype since 

they are used during the decoding of the phenotype.  The values for these 

variables are subject to evolution just as is the rest of the cell’s genotype.  

In summary, the cells have the ability to do nothing, move towards or away 

from a chemical, signal and divide.  Their genome contains functions so that 

when decoded, these actions are either performed directly or as a result of 

the chemicals around them and their current energy levels. 

The size of the genome was a program parameter.  Genomes of lengths five 
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to fifty genes were tested during initial experiments.  Longer genomes often 

resulted in more complex phenotypes.  The length of the genome had an 

impact on the amount of genetic drift and neutrality that was possible.  Since 

only one gene was mutated during cell division, a longer genome meant a 

lower probability that the mutated gene was expressed in the phenotype.  

Shorter genomes were more likely to reach the left-most gene, which was 

coded with the ‘do-nothing’ function during the decoding of the phenotype.  

To balance the complexity of the phenotype and the amount of neutrality, a 

genome of length 20 was used during the experiments. 

Genotype-Phenotype Mapping Example 

In order to fully explain the decoding process for a phenotype, it is helpful 

to give an example.  This example shows a cell’s genotype and its 

corresponding phenotype.  A sample cell genotype is given in Figure 6.  The 

positions containing functions are underlined. 

0 1         2    3         4         5
| 0 0 0 0 | 7 1 0 0 | 1 0 1 0 | 1 0 1 2 | 3 1 0 0 | 3 0 2 4 |

 

Figure 6: Example Cell Genotype in CGP 

The genotype described in Figure 6 can be represented pictorially as shown 

in Figure 7.   
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Figure 7: Pictorial Representation of a Cell Genotype in CGP 

To map the genotype to a phenotype, the right-most gene is assessed first.  

In the example, this is gene number 5 and the function in position (1) is 

function 3: If (2) is present, do (3) else do (4).  The value in position (2) is zero, 

which represents Chemical A.  If Chemical A is present around the cell (over 

a fixed threshold), then decode and perform the gene identified by position 

(3): which is gene 2.  Otherwise perform the gene identified in position (4): 

gene 4.  This process continues until an action is found. 

The fully decoded phenotype for this example is shown in Figure 8.  The 

resulting phenotype describes the behavior of the cell and is a series of IF-

ELSE statements and cell actions. 

If Chemical 0 is present

Move towards Chemical 0

Else

If Chemical 1 is present

Do nothing

Else

Do nothing

 

Figure 8: Example Decoded CGP Cell Phenotype 
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3.5.6 Genetic Operators 

The only operator used in this implementation is mutation.  The cells are 

replicated only by cell division so sexual reproduction and crossover is not 

relevant.  An elitist form of evolution is used so that after cell division, one 

cell remains the same so the parent.  The second cell is always mutated.  

There are two steps in cell mutation: mutating the CGP string, and mutating 

the cell’s threshold values. 

The first step in mutation consists of randomly changing one of the integer 

values in the genotype’s CGP string.  Only one value is changed per 

mutation.  Possible changes that can result from mutation include changing 

a function, a chemical input, or a node connection within a gene. 

A second step is modifying the cell’s threshold values.  In this 

implementation each cell has two local variables that contain and upper and 

a lower energy threshold value.  This permits the cells to act according to 

their current amount of energy.  These variables contain a real number, 

which is mutated in a manner similar to the mutation performed in 

Evolution Strategies (Schwefel, 1981).  Each threshold variable is increased 

or decreased by adding to it a random number.  The random number is 

similar but not equal to a normal distribution.  It is actually a random 

number added to the variable and then a second random number in the same 

range subtracted from the variable.  This type of random function in Java 

was used instead of a normal distribution so that the applets would still be 

compatible with most Internet browsers.  The range of the random numbers 

was equal to 20% of the maximum energy value allowed for a cell. 
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3.5.7 Population Size and Fitness Evaluation 

An initial population of cells was created for each execution.  The number of 

initial cells is a parameter modifiable in the user interface.  All of the cells in 

the population were generated with a random set of genes.  If the population 

size decreased over time, the program would generate new cells randomly 

placed in the environment.  This kept the population at the minimum size 

required by a parameter controllable from the user interface.  A maximum 

size parameter was also available to the user to control how many cells could 

be created through cell division.  Once the maximum limit was met, the cells 

would not be able to perform cell division. 

A steady state algorithm was used in which cells would continue living or 

dividing until they no longer had energy and died.  When a cell divided, the 

rest of the population would remain as-is.  Fitness was not explicitly 

measured, but instead was a result of the cells being able to perpetuate the 

existence of their DNA.  Cells that had a long life and did not self-replicate 

were considered equally fit to cells that divided often as long as both strands 

of DNA continued remain active in the environment. 

It was decided that a generational algorithm would not produce the desired 

results.  By selecting the cells with the most energy and allowing them to 

divide and continue on to the next generation, it would have been possible 

to implement a generational algorithm.  However, this was not desired since 

cells that could continue to live or divide successfully with a small energy 

amount were considered just as fit as others with large amounts of energy.  

This would have given cells incentive to evolve to search out energy, not to 

pass on their DNA.  A generational algorithm would also have required 
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significantly more processing time and would have been less similar to 

nature.  

3.5.8 Results 

The evolving cell experiment produced cells that exhibited interesting 

behaviors.  It was entertaining to witness an initial population of cells, each 

with their own, often odd, behavior.  Some cells would circle around, others 

would do nothing and signal, and others would move quickly and efficiently 

towards energy sources.  As time steps passed, the cells with losing 

strategies would die off and cells with better fitness would either continue to 

live or produce offspring.  After some time went by, it was possible to 

observe recurring strategies and even some emergent group behavior.   

A family of cells can be considered to be all of the cells in a population that 

share a common lineage and therefore DNA.  Even though many of the cells 

had mutated over several generations, often the behavior (the phenotype) of 

the cells would remain the same.  Observing families of cells often revealed 

group behavior that could be thought of as the actions of a multicelled 

organism. Observations of experiments and the effects of different settings 

are documented in the following section. 

3.5.9 Analysis 

General Observations 

The populations of cells during the experiments usually tended to find a 

working strategy and use it for a while.  Occasionally, an improved mutated 

phenotype would evolve and eventually dominate the population.  

Sometimes, even though a population consisted mostly of a successful 
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breeding cell family, a few older cells would exist.  These cells did not divide 

but merely had the instruction to move towards energy sources.  They had 

been lucky enough to continue finding new sources after each old source ran 

out.  Since they did not divide and split their energy in half, they were able 

to keep more energy for themselves.  This store of energy gave them a longer 

time to search out a new energy source before running out of energy.  In the 

long term, however, these cells almost always died off eventually.  Either 

they would ultimately not find a new energy source or cells that had already 

found the new source would block them out. 

Families of cells that divided showed much better success at long-term 

survival.  By accepting the energy cost of cell division, they were weakened 

individually.  In spite of this, as a group they were stronger.  The families of 

cells were able to distribute their stored energy into more cells so that a 

greater area of the environment could be explored for new food sources.  It 

didn’t matter that a large percentage of the cell family died by not finding 

sources.  The probability of at least a few of the cells finding an energy 

source was high and those cells would absorb energy and divide to create 

the next generation.  This was an example of cell cooperation.  The cells were 

sacrificing their own fitness for the fitness of the group.  As mentioned in 

Section 2.2, the movement from competing cells to cooperating cells might 

be one of the first requirements for the development of multicellularity. 

Genetic Neutrality and the Cambrian Period 

The rapidly changing environmental conditions during the Cambrian Period 

are possibly the cause of the genetic diversity and progress for which the 

period is known (Kirschvink, Ripperdan, and Evans, 1997).  In the spirit of 
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this time period, the environment’s energy sources were increased or 

decreased over time.  This made it possible to observe the robustness of 

individuals and watch the phenotypes adapt to new conditions.  Changing 

the diffusion and evaporation parameters was also an effective way to 

change the environment during experiments.   

When environmental conditions were changed, a stable population started to 

adapt to the new environment.  Slowly new mutant cells would begin to 

appear that were better positioned to compete for the energy sources.  An 

example seen often was the evolution of a simpler phenotype when 

resources were plentiful and more complicated phenotype behavior when 

resources were scarce.  A lack of energy source meant that cells needed to be 

more careful about conserving their energy and could not divide as freely. 

A high degree of neutrality was created in the populations over time.  Even 

though one phenotype might begin to dominate the population, mutations 

would constantly be changing the genotype of the cells.  Only rarely did a 

mutation affect the phenotype behavior.  Often when a mutation did manage 

to change the phenotype, the cell would not behave well and would die 

quickly, removing it from the population. 

After many generations of cells dividing, a population would often consist of 

a very diverse set of genotypes which all mapped approximately to the same 

phenotype.  When the environmental conditions changed as described 

above, the neutrality and genetic drift seemed to have a positive effect on the 

population’s ability to adapt to the new conditions.  The diversity of 

genotypes due to neutrality led to a wide range of phenotypes being tested 

in the new environments.  It was much easier for mutations to find a better-

  60



Rothermich, J. 

suited phenotype as a result of this diversity.  Neutrality in this way made 

the population and families of cells sharing the same DNA origins much 

more robust. 

Collision Detection and the Huddle Strategy 

The ability to control whether or not two cells could occupy the same space 

was available as a checkbox on the user interface.  The value of this setting 

had strong impacts on which cells were successful and how the cells 

evolved. 

In order for a family of cells to be successful, it was important that it reached 

food sources quickly and then was able to take advantage of them when the 

cells were there.  When collision detection was turned on, it was possible for 

groups of cells to monopolize the food source and block out other cells 

trying to reach it.   

If the population was a moderate size and there was little competition for 

the limited supply of food, then usually cells evolved to simply move 

towards the food.  However, when there was strong competition for food 

and collision detection was enabled, different behavior was more successful.  

Occasionally, cells evolved to move towards food, but once there, move 

towards each other’s chemical signal.  This behavior resembled a huddling 

action around the food that blocked out competition from entering.  

Signaling and moving towards the signal concentration kept the group as 

tight as possible.  If instead a cell just moved towards the highest level of 

food in its immediate environment, the cell might move around a little. Since 

many cells are quickly absorbing the food coming from the source (the food 
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drop-off point), a cell might sense a temporarily higher level of food in the 

direction opposite the food drop-off point—just outside of the cluster.  While 

a cell might get a short-term benefit from moving away from the group, it 

might also lose its position and allow competition to enter.  In this case, 

short-term greedy behavior hurt the cell and the average success of the 

family of cells. 

Stopping Once the Destination Was Reached 

When collision detection was turned off (and cell polarity was turned on), 

different types of strategies evolved.  Without collisions, cells wouldn’t be 

stopped just by running into each other, getting stuck, and forming clusters.  

Instead, they would approach the food source, absorb some of the chemical 

and then move past it.  Then, having passed the source, they would have to 

turn around and go back.   

The most effective behavior in this situation was to have a combination of 

the functions “move towards the food” and “do nothing” in the cell’s 

phenotype.  One successful combination was a group of cells that evolved to 

move toward the food as long as the cell’s energy was low.  When a cell 

moved over a food source, its energy would be quickly increased.   The cell 

used an energy threshold function so that once the energy reached a certain 

level, the cell would stop moving and ‘do nothing’.  Often, this resulted in a 

cell stopping perfectly on the location of the food source, absorbing the 

maximum amount of chemical producing energy possible until the source 

was depleted.  An example of a phenotype using this behavior is shown in 

Figure 9.  This proved to be an effective strategy but was not necessarily 

beneficial to the group of cells in a cell family. 
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If Energy is greater than 5 then 

Do Nothing

Else

Move Towards Chemical 0

 

Figure 9: A Cell Phenotype That Stays Still Once It Has Found Food 

Evolution Exploiting the Environment 

After the programming for cell division was completed, a few experiments 

were performed to see what behaviors would evolve and be successful.  

During this set of experiments, the same sort of phenotype became dominant 

almost every time.  Regardless of how strong the energy cost was set for 

dividing, cells almost always evolved to divide immediately.  They would 

keep dividing and die off if no food was found.  The ones that found food 

flourished and continued to divide.  The population size quickly reached its 

maximum almost every time. 

It was later discovered that a bug was in the program that only applied the 

energy cost to one of the offspring.  Regardless of how the division energy 

cost parameter was set, the other offspring would always keep the original 

energy level of the parent.  This program bug meant that there was no risk to 

dividing.  Usually a parent cell’s energy would be split in half plus an 

additional amount of energy would be deducted for the effort of dividing.  

Since there was a bug in the way the environment operated, the process of 

evolution learned how to exploit it to their advantage. 

Dividing Only While Located at an Energy Source 
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After the bug in the previous example was fixed, cells had to be more careful 

about whether or not they would divide.  While it was important to produce 

offspring, helping their cell family to explore and increase chances of long-

term survival, it was dangerous to divide unless energy was high or a food 

source was near.  Each time a cell divided, its energy was more than cut in 

half.  If a cell divided when its energy was low, it hurt its chances of finding 

a food source before running out of energy and dying.  

When an experiment was run over a large number of time-steps, cells would 

often evolve to only divide if they had a high amount of energy and were 

thus probably near a food source.  An example of a cell with this behavior is 

shown in genotypic form in Figure 10 and its phenotype is shown in Figure 

11. 

| 0 0 0 0 | 7 1 0 0 | 4 1 0 0 | 2 0 0 1 | 5 0 2 0 | 7 0 4 4 |

| 0 0 3 1 | 8 1 1 1 | 1 0 1 2 | 0 0 7 4 | 1 0 2 5 | 5 1 10 1 |

| 1 0 1 1 | 4 0 10 12 | 4 0 11 9 | 0 1 6 2 | 6 1 10 7 | 2 0 7 9 | 

| 6 1 2 17 | 6 1 10 7 | 

 

Figure 10: The Genotype of a Cell that Divides Only When It Is Near a Food Source 
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If Energy is lower than 8 then 

Move Towards Chemical 0

Else

Release Chemical Signal and

Divide and

Do Nothing

 

Figure 11: The Phenotype of a Cell that Divides Only When It Is Near a Food Source 

This program allowed the cells to divide only when they had a significant 

level of energy.  If they were low on energy, they would move towards food.  

Once they found food and their energy increased, they would stop moving 

as the cells did in a previous example.  While collecting energy, they would 

reproduce and not move.  This often worked because it meant that they 

could position themselves directly at an energy source and divide as much 

as possible making the group strong.  If a cell had used another strategy and 

did not divide, the single cell would grow strong but only up until the 

maximum energy level—the rest of the energy would have been wasted. 

This strategy was very successful so the population was dominated by 

similar phenotypes.  Since collision detection was turned off, almost all of 

the cells in the population would be located at a single position during their 

dividing phase.  While collecting energy and dividing, the cells would 

develop a massive population that would stay at a food source and grow.  

Once the food source was gone, cells would continue to divide until the cells 

had an energy level below the threshold of 8.  Then the cells would all go at 

the same time to search for a new food source.  This mass exodus of leaving 
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looked almost like a tidal wave of cells.  Since all of the cells had been 

occupying the same location, a small amount of the energy-producing 

chemical was distributed throughout the environment.  The cells would take 

advantage of this residual amount which helped them stay alive long 

enough to find the next food source.   

 

Cell-783.2145 : Energy: 0.7499999 Genome Created At Time: 2945 

Figure 12: A Mass Exodus of Cells Looking for a New Energy Source 

The mass exodus after an energy source was depleted is shown in Figure 12.  

The center of the group of cells is where the previous energy source was 

located.  Since the population was large and all cells were releasing signals 

while dividing, the environment was filled with the red colored signaling 

chemical.  The purple region is a mix between the blue energy-producing 

chemical and the red signaling chemical.  Clicking on one of the cells in the 

population displayed the phenotype and statistical information.  The cell 

selected had descended from the initial population.  It’s original parent cell 
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was number 783 and it was the 2145th generation to be created from that cell. 
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4 Conclusions and Next Steps 

The goal of this research was to explore the origins of multicellularity in an 

artificial life setting, helping to gain insight into emergent behaviors.  Two 

primary experiments were conducted, a simulation of the aggregation of 

cellular slime molds and an evolving ecology of cells that were programmed 

with Cartesian Genetic Programming. 

The slime mold aggregation experiment showed behavior characteristic of 

slime mold in nature.  Cells were created in random locations and began to 

aggregate into a single group, resembling a more complex organism.  During 

this experiment, the effects of randomness, polarity and other settings were 

explored.   

The use of Cartesian Genetic Programming was successful in producing cell 

behaviors that were at the same time novel and successful.  The cells evolved 

several interesting strategies that sometimes benefited from group behavior.  

Behavior such as huddling and blocking were discovered.  Creative uses of 

evolving thresholds were also used by groups of cells to improve cell 

division strategies. 

The cell rules in the second set of experiments were not carefully 

handcrafted for each cell and made with an expected behavior in mind.  

Instead the rules evolved by themselves.  And instead of intuitive behavior, 

what evolved often resulted in surprising strategies that would not have 

been thought of otherwise. 

The implementation provided a good base for the experiments performed in 
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this research and should hopefully provide a good test bed for a wide 

variety of future experiments. 

Improvements and Next Steps 

This application was written in an older version of Java so that it would be 

compatible with most web browsers.  For this reason, some sacrifices were 

made in terms of performance and code simplicity.  For example, the Java 

class Vectors was used instead of some of the newer and more efficient 

classes.  Also some graphical elements were removed once it was realized 

that Java2D was incompatible with many browsers.  Future implantations 

using this code should take into consideration whether or not browser 

compatibility is an issue and modify the code accordingly. 

Further experiments in this area might lead to more complex cellular 

behavior.  Additional functionalities that might provide interesting results 

are cell adhesiveness, growing sizes of cells, and the ability for groups of 

cells to move at different rates than single cells 

A partial design including some code for a Predator / Prey experiments has 

been done during this research and is documented in the code.  In addition 

to Predator / Prey, the code could also be fairly easily extended to allow 

parasites, further symbiotic relationships, bottom feeders, etc.  Other ideas 

are the use of a constant or periodic source of energy such as sunlight, the 

addition of more chemicals, and possibly even a current or stream-like effect.  

Combining adhesiveness with the effects of a current might show why it is 

helpful for organisms to attach to something stationary to capture passing 

food.  Adding functions to the cells or the increasing the complexity of the 
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ecology using these ideas or others might lead to more creative group 

behavior and might show additional insight into multicellular development. 

One of the effects of using Cartesian Genetic Programming to evolve cell 

behavior was the high degree of neutrality and redundancy apparent in the 

cell’s genotypes.  It was observed that this feature seemed to have a positive 

effect when evolving the cells, especially during times of rapid 

environmental change.  More work could be done in studying the specific 

impacts of neutrality and genetic drift in this context.  Perhaps a comparison 

could be made between a population that allowed neutrality and one that 

didn’t.  To prohibit neutrality, genetic mutations could be restricted to those 

that made a change to the phenotype mapping. 
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Appendix A: Mini-project declaration 
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Appendix B: Statement of information search strategy 

A formal search was planned so that relevant literature could be assessed 

and reviewed while performing this research.  The plan for searching 

consisted determining types of literature to search and which search tools to 

use.  This statement appears in the format provided by The University of 

Birmingham guide to writing mini-project and project reports (2001). 

Parameters of literature search 

Forms of Literature 

The types of literature listed below were determined to be the most relevant 

to this research.  The determination was based on performing an informal 

cited reference search and analyzing a representative sampling of the 

references retrieved.  The most important types of literature are listed in the 

order of importance: 

• Journal Articles 

• Conference Papers 

• Theses 

• Books 

The majority of the information reviewed for this research was found in 

Journals and Conference Papers.  Artificial Life is a relatively new field and 

there are not that many books published on the subject.  There were several 

informative books on evolutionary concepts and multicellular development. 
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Geographical/Language Coverage 

North America and the Western Europe were determined to be the primary 

locations for sources.  English and French languages were both possible with 

English being the primary language for the search.  Other languages would 

have to be evaluated using abstracts in English or via translations if it was 

determined to be an important source. 

Retrospective coverage and currency 

This area of research is fairly new so a search covering the ten last years 

should be sufficient.  This range should be appropriate to find any work 

using artificial life simulations to research the development of 

multicellularity. 

Appropriate Search Tools 

The following indexes were determined to be important search tools: 

Engineering Index (EDINA  Ei Compendex), Science Citation Index, and Internet 

Searches. 

The above tools provided access to journal articles, conference proceedings, 

and theses. 

Search Statements 

The following queries were used in searches 

multicell* AND evolution* AND (artificial life OR alife) 

genetic programming AND (artificial life OR alife) 
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These queries will be modified if recall is too high or low.   Two different 

queries have been identified it is necessary to research both multicellular 

development in artificial life and genetic programming. 

Brief evaluation of the search 

This search resulted in a broad range of papers that were deemed relevant.  

The Science Citation Index retrieved the most relevant resources.  The 

Internet also proved to be a valuable tool since many artificial life 

simulations were available as demonstrations.   
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Appendix C: Java API Documentation 
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Appendix D: Java Source Code Excerpt 
 
 

This appendix shows code for the decoding of the phenotype using 

Cartesian Genetic Programming.  A complete listing of source code will be 

provided on the Internet on the student web page: 

http://studentweb.cs.bham.ac.uk/~msc84jar/ 

This method decodes the genome to create the phenotype: 
 
private void executePhenotype(Chemical[] chemicals, Chemical chemReleased) 
  { 
  int currentGene = numGenes-1; /* this assigns the entry point for decoding the 
genome*/ 
  boolean actionFound = false; 
  while (!actionFound) 
  { 
    switch (gene[currentGene][0]) /* evaluate the function of the current */ 
    { 
    case 0 : 
      /* do nothing */ 
      actionFound = true; 
      break; 
    case 1 : 
      /* move towards the object given in the first node of the gene */ 
      { 
      move(true, chemicals[gene[currentGene][1]]); 
      actionFound = true; 
      } 
      break; 
    case 2 : 
      /* move away from object given in the first node of the gene */ 
      { 
      move(false, chemicals[gene[currentGene][1]]); 
      actionFound = true; 
      } 
      break; 
    case 3 : 
      /* if the substance in node 0 is present, then do node 2 else node 3 */ 
      { 
      if (chemicals[gene[currentGene][1]].getLevel(x,y) > chemThreshold) 
        currentGene = gene[currentGene][2]; 
      else 
        currentGene = gene[currentGene][3]; 
      } 
      break; 
    case 4 : 
      /* if the substance in node 0 is present, then do node 3 else node 2 */ 
      { 
      if (chemicals[gene[currentGene][1]].getLevel(x,y) > chemThreshold) 
        currentGene = gene[currentGene][3]; 
      else 
        currentGene = gene[currentGene][2]; 
      } 
      break; 
    case 5 : 
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      /* if the energy level is above upper threshold then do node 2 else node 3 */ 
      { 
      if (energy > energyUpperThreshold) 
        { 
        currentGene = gene[currentGene][2]; 
        } 
      else 
        currentGene = gene[currentGene][3]; 
      } 
    case 6 : 
      /* if the energy level is lower than lowerthreshold then do node 2 else node 3 
*/ 
      { 
      if (energy < energyLowerThreshold) 
        { 
        currentGene = gene[currentGene][2]; 
        } 
      else 
        currentGene = gene[currentGene][3]; 
      } 
      break; 
    case 7 : 
      /* perform node 2 and divide afterwards */ 
      { 
      divideNow = true; 
      currentGene = gene[currentGene][2]; 
      } 
      break; 
    case 8 : 
      /* perfrom node 2 and signal */ 
      { 
      release(chemReleased,prevX,prevY); 
      currentGene = gene[currentGene][2]; 
      } 
      break; 
    default: 
      System.out.println("Error: could not decode genome"); 
      break; 
    } 
  } 
 } 
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