
Implementation of a Design Virtual Machine

TR 29.3022

Stephen L. Burbeck

Stephen G. Graham

Emerging Technologies
IBM Network Computing Software

Research Triangle Park, North Carolina 27709

IBM Network Computing Software

The authors have used their best efforts in the preparation of this report.
International Business Machines Corporation and the authors make no
representation or warranties with respect to the accuracy or completeness of the
contents of this report.

The following terms, denoted by ® or ™, used in this report are registered
trademarks or trademarks of International Business Machines Corporation in the
United States and other countries.

IBM

VisualAge

ThinkPad

The following terms, denoted by ® or ™, used in this report are registered
trademarks or trademarks of the listed holder. All other brand names and product
names used in this report are trademarks, registered trademarks, or trade names of
their respective holders.

Java Sun Microsystems, Inc.

© Copyright 1998 by International Business Machines Corporation. All rights
reserved.

IBM Network Computing Software

ABSTRACT

This report describes the design and implementation of a design virtual machine
that “executes” fine grain design descriptions of Smalltalk systems. The design
statements, in the form of signatures and qualifiers, characterize method level
collaborations between Smalltalk objects. The code specifies the details of those
collaborations. Code is compiled into the design analogs of bytecodes that are
executed by the design virtual machine. The execution of the design either
validates the collective design declarations involved in the execution of a method,
or finds mismatches between the design and the code. This process is related to
but far more challenging than type checking in strongly typed languages. The
static analysis of a typical method takes less than 100 milliseconds on a modern
PC and therefore can be done in real-time whenever any method is browsed or
changed.

It is assumed that the reader is familiar with programming in Smalltalk and has
access to the separate IBM Technical Reports on Signatures and on Static analysis
of Smalltalk Signatures (see Bibliography).

ITIRC KEYWORDS

• Design virtual machine
• Executable design
• Smalltalk
• Data types
• Signature

CONTENTS

ABSTRACT__
CONTENTS__
INTRODUCTION___

The challenge of literal blocks_______________________________________6

EXECUTABLE DESIGN__8
Qualifiers___9

Signatures__10

Attributes__11

The ExecutionModel___12

ExecutionContexts___12

ExecutionSteps__13

DESIGN AND IMPLEMENTATION OF THE VIRTUAL MACHINE________
Outline of operation__

The ExecutionModel___

ExecutionContext__

Signature___

Attribute___22

Qualifier___

QualifierAspect___

ExecutionStep___

Generation of ExecutionSteps__

BIBLIOGRAPHY__

IBM Network Computing Software

IBM Network Computing Software

INTRODUCTION

In a separate IBM Technical Report [BG98a], we argue that code and design are
fundamentally different descriptions of an object oriented (OO) system. Both are
expressions of human intent that must be maintained separately. To use a theatrical
metaphor, code specifies the dialog and actions that take place in a scene whereas design
characterizes the actors’ roles and responsibilities.

Tools are needed to keep code and design synchronized as changes are made to the system.
The collaboration web in OO systems, especially Smalltalk, is so complex that changes made
to one method can violate the design in many others. Without tools to help pinpoint such
problems, the code in a system quickly diverges from its explicit design description.

We assert that the best approach to keeping code synchronized with design is method-by-
method static analysis. Just as code in a Smalltalk system is distributed among a large
number of small methods, so is design. We distribute behavior into many small methods
rather than fewer large methods so that each method does one thing and one thing well [JF88,
Bur96]. Each of these “things” is ideally the implementation of one responsibility of an
object, so its design is an atomic portion of the design of the system. We need, therefore, to
analyze the portion of the design relevant to each method in the context of the code in that
method.

Prior approaches to static analysis have been based upon the parse tree (see [BG98a, BI82]).
We use a different approach – a design virtual machine – largely because of the difficulties of
dealing with literal blocks. Here we summarize the reasons for favoring a design virtual
machine and the basic theory of the approach before presenting the details of our approach.

The challenge of literal blocks

Static code analysis of a Smalltalk method is much like the process a programmer takes when
reading the code. As we read through code, we mentally parse it, keep track of which objects
are assigned to variables, and note whether objects returned from messages sent are then
assigned to variables or are sent subsequent messages. We view the objects involved in the
method more as generic instances of the appropriate class rather than specific instances with
specific values of instance variables.

When literal blocks are involved, the task becomes more difficult both for reading the code
and for static analysis. Literal blocks are essentially unnamed methods that are defined in-
line and invoked by a variety of mechanisms that can be quite subtle. When we read code
that contains blocks, we have to mentally step back and determine when the block will be
evaluated, under what conditions, and with what arguments. Then we envision the block
being evaluated, perhaps iteratively. We also must be sure we understand the fate of the
result of each evaluation of the block (especially with messages such as #collect:, or
#inject:into:). In some cases, e.g., SortedCollection >> #sortBlock:, the block is not

IBM Network Computing Software

evaluated until some undetermined later time. Nonetheless, when we read the code in which
the #sortBlock: message is sent, we mentally “execute” the sort block to see how the sorting
will be done.

Literal blocks also complicate matters for static analysis. Blocks may be assigned to
variables that later are sent ‘value’ messages. These blocks are not invoked where they
appear in the parse tree. Also, a literal block may be invoked with different arguments within
the same method. The following example illustrates some of these issues. It has been
contrived specifically to challenge a static analyzer. It also is quite a challenge for human
analysis to determine whether the method can execute and, if so, whether its signature is
correct. If the reader wishes to take that challenge, note that the conditionalBlockDepth
method returns a nonnegative integer.

twistedBlockValues
"<^hOf Integer>"
"Example of sending value to literal blocks.
 Note: evaluation order is very different from appearance order and
 blocks are entered multiple times."

| firstBlock secondBlock thirdBlock twistBlock |
twistBlock := [:blkArg1 :blkArg2 | blkArg1 value: blkArg2 value].
firstBlock := [:myArg | myArg * secondBlock value].
secondBlock := [self conditionalBlockDepth].
thirdBlock := [:myArg | myArg printString].
^(thirdBlock value: secondBlock value) size > 3

ifTrue:
[twistBlock value: thirdBlock value: secondBlock]

ifFalse:
[twistBlock value: firstBlock value: secondBlock]

In this contrived example, the static analysis must not and cannot analyze the blocks when
they first appear. At the point they appear in the parse tree, nothing is known about what
kinds of objects will occupy the blockArgs. Moreover, the analyzer must pass through the
blocks each time they are invoked because the types of the blockArgs may (and do) differ
when invoked from different places. No one-pass traversal of the parse tree can analyze this
code. The design virtual machine approach we describe in this report can handle such
twisted code (it analyzes the twistedBlockValues method in 109 milliseconds on a 133 MHz
IBM ThinkPad™ and, by the way, its signature should be <^(hOf Integer | hOf
String)>). The design virtual machine can also analyze the wide variety of blocks involved
in iteration (e.g., #collect: and #inject:into:) and some kinds of recursively invoked blocks.

Introduction 7

EXECUTABLE DESIGN

The central idea of this report is that static analysis can be approached in a manner analogous
to the way the virtual machine executes compiled Smalltalk code. To explain this approach
we must first examine the way Smalltalk virtual machines execute code.

Three categories of activities occur during execution: memory management (i.e., the creation
and destruction of objects), handling of external events, and interpretation of bytecodes that
have been previously compiled from Smalltalk methods. For the purpose of static analysis,
we can ignore memory management and external events because the visible behavior of
Smalltalk code occurs under the explicit direction of bytecodes.

The compiler converts Smalltalk source code to bytecodes. These bytecodes are interpreted
by a virtual machine [GR83] [Ing83]. The virtual machine is a stack machine. Bytecodes
direct the virtual machine to push objects from variables (e.g., method args, instance
variables, etc.) onto a stack, pop objects from the stack to store them into variables, and send
messages. Message sends pop their arguments and the receiver from the stack and push the
result onto the stack. Each invocation of a method or a block creates a MethodContext or
BlockContext object that maintains an instruction pointer into its bytecodes and provides
private state. A second virtual machine stack manages the active contexts during execution.
This second stack is the one made visible in the Smalltalk debugger.

Recall that when we read code to understand its effect, we mentally replace the actual objects
with generic stand-ins. In our design virtual machine, qualifiers stand in for the objects so
described. Signatures similarly stand in for methods invoked as a result of a message send.
That is, objects and message sends are well described by qualifiers and signatures
respectively (see [BG98a, BG98b]). The question is how to represent the behavior of the
code itself. Our approach, rather than representing the code as a parse tree, is to represent it
as analogs of bytecodes (hereafter called execution steps) that are created from the parse tree
in a manner very similar to the generation of bytecodes.

In the design virtual machine approach to static analysis, a specialized virtual machine
executes the design, as specified by signatures and qualifiers, in the context of the code as
specified by the execution steps. That is, where objects are pushed and popped to and from
variables at runtime, qualifiers are pushed and popped to and from attributes by the design
virtual machine.

A runtime virtual machine executes message sends by pushing the receiver and args then
looking up the method to invoke, beginning in the class of the receiver and working up the
inheritance chain (note: if the receiver is “super” the lookup begins in the superclass of the
receiver). When the invoked method returns, its return value is left on the stack. The
runtime evaluation of blockContexts is similar to a message send because blocks are
essentially unnamed methods. However, no method look-up is needed

A design virtual machine executes a message send in an analogous manner. Under the
direction of execution steps, it begins execution of a method by pushing a self qualifier

IBM Network Computing Software

followed by arg qualifiers. Method look-up differs from the runtime technique in one
important way: if the receiving qualifier is an alternatives qualifier, we must analyze the
signatures of all of the potentially receivers. Note, however, that we do not need to
recursively analyze the method(s) that would be invoked. The design virtual machine need
only check that the argument qualifiers on the stack are valid according to the qualifiers in
the receiving signature(s). After this process, the return qualifier, determined by the
signature(s) of the method(s) that would be invoked, is left on the stack. The evaluation of
blocks by the design virtual machine proceeds in a manner similar to a message send.

The following table shows the elements involved in execution of Smalltalk in a typical
virtual machine and the corresponding elements in the design virtual machine.

Execution Model Design Model

Objects Qualifiers

Message sends Signatures

Variables Attributes

Virtual Machine ExecutionModel

Block/Method Contexts ExecutionContexts

Bytecodes ExecutionSteps

Table 1. Correspondence between elements of the execution VM and the design VM

Qualifiers

Qualifiers are the design equivalents of objects. A qualifier specifies, via the qualifier syntax
given in [BG98b], what kind of object can be encountered at runtime. The simpler ones state
that the object will be an instance of some specific class (denoted by instanceOf aClass,
abbreviated as iOf aClass) or an instance of some class or its subclasses (indicated as
hierarchyOf aClass abbreviated as hOf aClass). Qualifiers can also specify the three
“special” objects: true, false, and nil. Other qualifiers allow one to describe objects whose
qualification depends upon the context in which they are found, e.g., self, super, or arg1.
More complex qualifiers can specify such things as:

• the object is the class itself (i.e., iOf class aClass),

• the object satisfies one of a list of alternative qualifiers (e.g., (hOf Integer | nil)),

• the object is a copy of the second argument to the method (denoted arg2 copy),

• the object is a collection that holds objects that satisfy a qualifier (e.g., iOf
OrderedCollection {of: (hOf CustomerRecord | hOf SalesInvoice}),

Introduction 9

• the object is a one argument block where the block argument must satisfy a qualifier and
the block returns an object that satisfies another qualifier, (e.g., [:blockArg1 hOf
CustomerRecord, ^(true | false)]).

Qualifiers such as self or arg1 have two special properties not shared by the other qualifiers.
First, they refer to specific objects, i.e., instances, not just to their class (hence, we call them
instance qualifiers). That is, when a method’s signature says that it returns arg1 (e.g.,
Collection>>#add:), the signature means that the method returns the same instance that it
receives as its first argument, not just that it returns an instance of the same class. Thus the
static analysis must be able to determine whether the same instance was returned and not be
fooled by the return of an object of the same class as the first arg, or even by a copy of the
first arg. Second, these qualifiers are unresolved, i.e., we cannot know the properties of the
object until we can resolve those properties in the context of the analysis.

The qualifiers that describe constituent parts of other qualifiers are called aspect qualifiers,
i.e., they qualify some aspect of the object described by another qualifier. In the example
mentioned above, iOf OrderedCollection {of: hOf CustomerRecord | hOf SalesInvoice }, the
{of: …} modifier is the aspect qualifier that describes the elements of the collection. When
the aspect is an alternatives qualifier as in this case, the alternatives need not have any
inheritance relationship to each other. Some kinds of object such as Dictionary or Stream
have more than one aspect. A Dictionary needs a key: aspect and a value: aspect. Streams
need two aspects for a more subtle reason; Stream protocol includes methods that deal with
single elements of the collection managed by the stream (e.g., #next, or #nextPut:) as well as
methods which refer to the whole collection (e.g., #contents). Thus Stream requires the of:
aspect to refer to the individual elements as well as the on: aspect to refer to the whole
collection. Conveniently, however, most uses of stream can rely on the defaults for these
aspects, which describe a String of Characters.

Much of the operation of the design virtual machine only requires that qualifiers be
manipulated on a stack, e.g., pushed or popped, and shuttled between the stack and the
various attributes involved in a method. But qualifiers play a more active role in modeling
the sending of messages. The qualifier is responsible for determining which methods might
be invoked when a given message selector is sent to the object represented by the qualifier.
If the qualifier models instances of a single class, the method lookup starts at that class. If
the qualifier specifies multiple alternatives, the lookup is done separately for each alternative.
If the qualifier depends on its context, e.g., self, then that context is used to resolve the
qualifier to an instance of some class before the lookup proceeds.

It should be noted that the problems posed for static analysis by instance qualifiers, aspect
qualifiers, and block qualifiers, taken singly or in combination, go far beyond the issues
involved in type checking C++ or Java™ code.

Signatures

Signatures model the external aspects of a method: the kinds of objects that are sent to a
method (i.e., its args) and returned from a method. A qualifier specifies the “kind” of each of
these objects. The signature is a list of qualifiers delimited by angle brackets. There is one
qualifier for each argument to the method plus on for the return from the method. During

IBM Network Computing Software

analysis of a method, signatures play two roles. The signature of the method under analysis
provides the argument qualifiers for the method we are analyzing, which tell us what kind of
objects enter as arguments. Signatures from the methods invoked by code in the method
provide the information necessary to analyze each message sent and determine the objects
returned from those message sends. These signatures allow us to check that the qualifiers of
the arguments satisfy the corresponding qualifiers of the methods to be invoked, and allow us
to determine the qualifier (which may be an alternatives qualifier) of the result of the
message send.

It is common for people, on first encountering the notion of static analysis, to believe that the
analysis must recursively analyze all the message sends invoked during the execution of the
method, i.e., also analyze all the methods that would be executed at runtime as a result of
executing the method under analysis. This is not so. We assume that the signatures of the
methods called by the target of analysis are correct. We determine the correctness of those
signatures in the context of their methods by separate analyses.

Attributes

Attributes model variables: method and block arguments, method and block temps, instVars,
classVars, poolVars, and globals. In general, attributes contain two qualifiers, a declared
qualifier that specifies design intent and a deduced qualifier that keeps track of which objects
are assigned to the variable during static analysis. Temporary variables lack a declared
qualifier because there is no mechanism by which the developer can declare design intent for
those variables. And method arguments lack a deduced qualifier because objects may not be
assigned to them during execution.

Whenever a qualifier is assigned to an attribute (including the attribute for the method
return), the analysis determines whether the qualifier assigned to the attribute is legal
according to the declared qualifier. That is, are the kinds of objects implied by the deduced
qualifier a subset of those allowed by the declared qualifier? If not, an error is signaled to the
design virtual machine.

Introduction 11

The ExecutionModel

The basic role of the ExecutionModel is to stand in for the runtime behavior of the virtual
machines in its execution of a single method. But the ExecutionModel must do additional
work imposed by the fact that the stand-ins for objects and messages, i.e., qualifiers and
signatures, are somewhat more complex than are objects and messages at runtime. The
ExecutionModel provides the following behavior:

• It manages all the attributes involved in the method. These may include an attribute for
any variable that is in the scope of the method (e.g., arguments, temp variables, Pool
variables, Class variables, or globals) as well as an attribute for the method’s return
value.

• It resolves unresolved qualifiers e.g., self, super, and argN, in the context of the
execution. These qualifiers may occur in qualifiers involved in a message send as well as
in the signature of the method being analyzed.

• It manages the two stacks. The qualifier stack holds the qualifiers that are pushed during
execution. The context stack holds the execution contexts that are active, i.e., one for the
method itself, and one for each block that has been entered and not yet exited.

• It executes the executionSteps that direct the actual execution. Each execution context
maintains a currentStep pointer. The ExecutionModel iteratively executes the current
step of the executionContext that is on the top of the contextStack.

• It records notifications generated during execution. These are of three types:
informational, warning, or error.

The only informational notification is that a receiver has been made more concrete.
Warnings are generated if a method improperly calls another method that is marked ‘private’,
if a method contains a block that has not been evaluated, or if an argument qualifier for a
message send contains some alternatives that the receiving method cannot handle along with
some that it can. Thus, analysis is optimistic. It assumes that if some alternatives are
qualified, the method may work. The warning, however, lets the user decide whether these
improper alternatives will actually be sent as arguments. Errors are signaled whenever a
disqualification occurs, i.e., when the deduced qualifier of an attribute does not meet the
qualification of the declared qualifier, or when the deduced qualifier for the receiver of a
message does not understand the message. Here again, if the receiver qualifier is an
alternatives qualifier and some of the alternatives qualify, only a warning is generated.

ExecutionContexts

There is one executionContext for the method and one for each literal block in the method.
The context for the method is placed on the contextStack at the start of analysis. The

IBM Network Computing Software

contexts for any literal blocks are created from the parse tree and attached to the
PushLiteralBlock executionStep. Each executionContext contains the executionSteps for the
code in the method or block, and holds attributes for any arguments or temp variables
belonging to the method or block. It keeps track of which executionSteps have been
executed and will convey upon request the next step to be executed. When a
PushLiteralBlock step is executed, it pushes its executionContext onto the context stack.
The next step to be executed, then, is the first step in this context, which is now on top of the
context stack.

ExecutionSteps

Execution steps control most behavior specific to the code. There are twenty-six subclasses
of the abstract ExecutionStep. Most deal with the qualifier stack, e.g., pushing, popping,
fetching, storing, or returning qualifiers. Some are housekeeping steps such as those that
cause the VM to enter and exit executionContexts. The most complex deal with message
sends. The behavior of the different varieties will be discussed in more detail in a later
section.

The behaviors that all executionSteps share are:

• Conveying the positions in the source string of the first and last characters of the code
that generates the step. These positions are used to highlight code in the user interface if
the user is watching the execution.

• Holding the syntactic element that is key to the operation of the step. For example, if the
step fetches or stores to a variable, the key element is the variable name token. In a
message send, it is the message pattern.

• Storing the result of the execution of the step.

• Marking the step as a breakpoint, i.e., a point where the execution stops (this is used for
debugging the design virtual machine).

Introduction 13

IBM Network Computing Software

DESIGN AND IMPLEMENTATION OF THE
VIRTUAL MACHINE

Outline of operation

An instance of SEMExecutionModel manages the static analysis of a method The SEM
prefix stands for Semantic Execution Model and is used for all the classes in this application
although we will usually refer to these classes without the prefix where no ambiguity can
arise. An instance of NAFMethodArtifact, an object that wrappers the source code of a given
method, creates the ExecutionModel based on the parse tree obtained from the system
compiler (in this case, the compiler in VisualAge™). It requests the parse tree to generate
executionSteps and add them to the executionModel’s homeContext. These steps are then
executed one at a time until the ExitMethodContext step is executed. Let’s examine this
process in somewhat more detail.

Creating the ExecutionModel

A new execution model is created by the following code sent to the instance of
NAFMethodArtifact that represents the method.

NAFMethodArtifact>>
asExecutionModel

"<^hOf SEMExecutionModel>"
"Return a SEMExecutionModel on my method."

| newModel homeContext |
newModel := SEMExecutionModel new.
newModel methodArtifact: self.
homeContext := SEMExecutionContext forModel: newModel.
newModel homeContext: homeContext.
newModel externalStack: newModel prototypeStack.
newModel initializeAttributes.
self parseTree addStepsTo: homeContext.
^newModel

Notes:

• The externalStack contains the qualifiers for the args and receiver of the method. The
prototypeStack method creates and returns an initial externalStack, i.e., an
OrderedCollection with qualifiers for self and the args, self pushed first, then arg1, arg2...

• ‘initializeAttributes’ sets up attributes for the return value and any args, and resolves any
instance qualifiers.

IBM Network Computing Software

• Then the homeContext (an ExecutionContext) is created and the execution steps implied
by the code are added to it by sending ‘addStepsTo: homeContext’ to the root of the
parse tree. The root (an instance of EsMethod in VisualAge) initiates a depth first
traversal of the parse tree in which each node creates and adds its steps to the
homeContext via its implementation of the #addStepsTo: message. Any literal block
nodes in the parse tree create their own BlockContext and add their steps to that context,
not to the home context (see later section on generation of steps from the parse tree for
more detail).

Stepping through the static analysis

The executionModel steps to its end by executing its executionSteps one at a time until it
encounters the ExitMethodContext step or encounters a mismatch between the code and the
design (called a disqualification). Each step is executed by invoking the “nextStep” method.
The two methods are as follows:

stepToEnd
"<^(true | false)>"
"Repeatedly step until end or disqualification. Return true if
 reaches end OK, false if disqualification."

| nextStep |
nextStep := self nextStep.
[nextStep isMethodExit or: [self isDisqualified]]

whileFalse:
[nextStep := self nextStep].

^self isDisqualified not

nextStep
"<^hierarchyOf SEMExecutionStep>"
"Execute and return result of next step. If it has a breakpoint
 set, halt for debugging."

| nextStep |
nextStep := self activeContext nextStep.
nextStep isVisible

ifTrue: [self visibleStepCount: self visibleStepCount + 1].
nextStep breakpoint

ifTrue: [self halt].
^nextStep executeIn: self

Notes:

• The active context is the one on the top of the executionModel’s contextStack. The
nextStep method fetches the nextStep from the active context. The last step in a block
context is an ExitBlockContext step which pops the context stack. The next outer context
therefore resumes execution. A method context ending signals the end of the SEM
analysis.

• Some steps are not “visible”. Examples of non-visible steps are: entering and leaving
contexts, or duplicating the top of the stack in preparation for a cascaded message send.
For UI purposes, we need to keep track of the number of visible steps executed.

Design and implementation 15

IBM Network Computing Software

• Breakpoints are supported for debugging the execution model by bringing up the
debugger just prior to the point where the step is to be executed.

• The heavy lifting is done by the executionStep itself in its executeIn: method. The
knowledge about what to do is embodied in the executionSteps themselves.

Executing a step

The behavior of most ExecutionSteps is quite simple. They push a qualifier onto the stack,
pop it, etc. The SEMSend step code shown below is one of the more complex.

SEMSend>>
executeIn: executionModel

"<executionModel: hierarchyOf SEMExecutionModel, ^self>"
"Direct the execution model to take the steps needed for the message
 send. If a disqualification occurs, see if making qualifier(s) more
 concrete will solve the problem."

self receiver isDisqualified
ifTrue: [^self disqualifiedReceiverIn: executionModel].

self getResultQualifier.
(self hasDisqualification or: [self result isNone])

ifTrue: [self tryMoreConcreteExecutionIn: executionModel].
self hasDisqualification

ifTrue: [self notify: executionModel].
executionModel privacyChecking

ifTrue: [self checkForPrivacyViolationIn: executionModel].
executionModel push: self result

Notes:

• If the receiver qualifier is disqualified, execution cannot proceed and the executionModel
is notified.

• The real work is done by self getResultQualifier (see below).

• The code ‘self tryMoreConcreteExecutionIn:’ handles the case where the current method
is abstract, i.e., it is intended to be invoked for instances of subclasses of the abstract
class in which it is defined. In that case, some of the messages it sends to ‘self’ may not
be defined in the abstract class. ‘tryMoreConcreteExecutionIn:’ looks for
implementations in the subclasses.

• After the message send has been processed, it checks to see if any alternatives have
disqualified. If so, it stores the first disqualification in the executionModel. Note
however, the send step itself remembers all disqualifications so no information is lost.

• If privacy checking is desired, the ‘checkForPrivacyViolationsIn:’ method looks for cases
where message sends have violated privacy rules.

Here is the code for the two key methods: the first is ‘getResultQualifier’ which in turn sends
‘getResultQualifierForReceiver:’ to each relevant signature.

IBM Network Computing Software

getResultQualifier
 "<^self>"

"Get return quals from signature(s) and put in result. In the
 process check for and save partial or complete disqualification."

self signatures size > 1
 ifTrue: [self getResultQualifierForAlternativesReceiver]
 ifFalse: [self getResultQualifierForReceiver: self signatures first]

getResultQualifierForReceiver: aSignature
 "<aSignature: hOf SEMSignature, ^self>"

"Get return quals from signature and put in result. In the
 process check for and save partial or complete disqualification."

| resultQualifier |
resultQualifier := SEMAlternativesQualifier new.
self addResultQualifierForReceiver: aSignature to: resultQualifier.
self result: resultQualifier reduced

Notes:

• We add the return qualifier from each qualified signature to the alternatives qualifier for
the result of this message send.

• At the end, we reduce the alternative qualifier result, i.e., remove duplicates and convert
it to a singleton if only one alternative remains.

The ExecutionModel

Class structure

Object subclass: #SEMExecutionModel
 instanceVariableNames: 'attributes qualStack contextStack externalStack

lastPopped conditionalBlockDepth notifications returns
 methodArtifact semSignature privacyChecking visibleStepCount '
 classVariableNames: ''
 poolDictionaries: 'SEMExceptions '

• attributes – iOf Dictionary {key: hOf String, value: hOf SEMAttribute}, collection of all
attributes in the scope of the method that are accessed during the analysis, e.g., args,
temps, instVars, etc. Note that attributes inside blocks, e.g., block args and block temps,
are managed by the block’s executionContex, not by the method.

• qualStack – hOf OrderedCollection {of: hOf SEMQualifier}, the stack of object
qualifiers uses during the analysis

• conditionalBlockDepth – hOf Integer, a count of how deeply the current executionStep is
nested in conditional blocks.

• contextStack – hOf OrderedCollection {of: hOf SEMExecutionContext}, the stack of

Design and implementation 17

IBM Network Computing Software

contexts invoked during this method analysis. As the method is entered its
executionContext is pushed. As literal blocks are evaluated their context is pushed.
When a literal block exits, its context is popped. The next executionStep to be evaluated
is always the one pointed to by the executionContext on the top of the context stack.

• externalStack – hOf OrderedCollection {of: hOf SEMQualifier}, the stack as seen by the
sender of the message that would have invoked this method. This is intended to support
future ability to step into methods during the static analysis.

• lastPopped – hOf OrderedCollection {of: hOf SEMQualifier}, intended for allowing
undo which is not implemented yet.

• methodArtifact – hOf NAFMethodArtifact, the proxy for the method under analysis

• notifications – iOf OrderedCollection {of: hOf SEMNotification}, collection of
disqualifications, warnings, and informational notes encountered in the static analysis.

• privacyChecking – (true | false), a flag to trigger checking for privacy violations if
desired

• qualStack – hOf OrderedCollection {of: hOf SEMQualifier}, the stack of qualifiers being
pushed and popped during the execution.

• returns – hOf OrderedCollection {of: hOf SEMQualifier}, collection of return qualifiers
from the method (i.e., a method can have multiple returns)

• semSignature – hOf SEMSignature, the signature for the present method

• visibleStepCount – hierarchyOf Integer, a counter of steps that map visibly to the code
(i.e., excluding housekeeping steps such as dupeTopOfStack). This variable supports
visualization of the execution.

Key responsibilities and methods

Stepping through the static analysis
• nextStep – <^hierarchyOf SEMExecutionStep> Execute and return the next step. See

method presented previously. If it has a breakpoint set, halt.

• stepToEnd – <^(true | false)> Repeatedly step until end or disqualification. Return true
if reaches end OK, false if a disqualification occurs.

Push and pop stacks
• pop – <^hierarchyOf SEMQualifier> Remove and return the Qualifier on top of the

qualifier stack. Also push it onto the 'lastPopped' stack in case we need to retrace the
execution.

• popContext – <^hierarchyOf SEMExecutionContext> Pop and store the top of the
qualifier stack (the result of the block evaluation) into the executionContext's
resultQualifier to be used as the return qualifier of the literal block context. Then
remove the top context from the context stack and return it.

• push: aQualifier – <aQualifier: hierarchyOf SEMQualifier, ^arg1> Put aQualifier on top
of stack (at end of collection)

IBM Network Computing Software

• pushContext: anExecutionContext – <anExecutionContext: hierarchyOf
SEMExecutionContext, ^arg1> Put anExecutionContext on top of context stack (at end
of collection). Note: This is equivalent to starting the execution of the context since the
next step to be executed will now come from the new context

Fetch attributes
• addReturn: aQualifier – <aQualifier: hierarchyOf SEMQualifier, ^hierarchyOf

SEMQualifier> Add qualifier to the returns collection if it qualifies. Add disqualifier if
not. Reduce it and remove 'none' if necessary, and update the return attribute. Return the
added qualifier

• addSignatureAttributes – <^self> Resolve and install the methodArg and return
attributes in my attributes dictionary keyed by their variable names. Replace method arg
qualifiers with instance qualifiers that know their arg position. The return qualifier has
references to self and argN replaced with the appropriate instance qualifiers

• attributeForVariableNamed: aString – <aString: hOf String, ^(hOf SEMAttribute | nil)>
Get the attribute for the named variable

• resolvedSelf – <^hierarchyOf SEMQualifier> Create and return a qualifier for self, i.e., a
qualifier with the class set to the class in which this method is implemented.

ExecutionContext

Class structure

Object subclass: #SEMExecutionContext
 instanceVariableNames: 'executionModel steps stepPointer attributes

resultQualifier hasBeenEvaluated '
 classVariableNames: ''
 poolDictionaries: 'SEMExceptions '

• attributes – iOf Dictionary {key: hOf String, value: hOf SEMAttribute}, attributes private
to the context, e.g., block temps, block args.

• executionModel – hierarchyOf SEMExecutionMode, the execution model in which this
context is executing.

• hasBeenEvaluated – (true | false), flag to record the fact that the SEM has stepped
through the block.

• resultQualifier – (hierarchyOf SEMQualifier | nil), is nil if execution hasn't finished.

• stepPointer – hierarchyOf Integer, index of the last step executed

• steps – hierarchyOf OrderedCollection {of: hierarchyOf SEMExecutionStep}, the steps
for the code in the method or block represented by the context.

Design and implementation 19

IBM Network Computing Software

Key responsibilities and methods

Accumulating steps
• AddMethodEntry – <^self>, create and add an EnterMethodContext step. Its referent is

the self token for the executionModel.

• AddMethodExit – <^self>, create and add an ExitMethodContext step. Its referent is the
executionModel.

• addDefaultSelfReturn – <^self>, add default return of self – last step for methods without
a return in last step.

Managing attributes
• addAttributeFor: aToken – <aToken: hOf SEMToken, ^hOf SEMAttribute>, create and

install a new attribute for aToken. Note: senders must ensure that the token type is either
argument or temporary, the only attributes managed by an ExecutionContext.

• attributeFor: aToken – <aToken: hOf SEMToken, ^(hOf SEMAttribute | nil)>, answer
the attribute for aToken if I have it, else answer nil.

Stepping through the static analysis
• nextStep – <^hierarchyOf SEMExecutionStep> Return next step. If context is complete

return last step

Signature

Class structure

Object subclass: #SEMSignature
 instanceVariableNames: 'scanner context argQualifiers returnQualifier

numberOfArgs positions '
 classVariableNames: 'SignatureCache '
 poolDictionaries: 'SEMExceptions NAFParsingExceptions '

• scanner – hOf NAFScanner, a simple token scanner that keeps the input string that
created the signature

• context – hierarchyOf NAFMethodArtifact, the method artifact from which arg names
can be obtained

• argQualifiers – hierarchyOf AbtOrderedDictionary {key: hOf String, value: hOf
SEMQualifier}, the qualifiers in the signature keyed by their name. ‘^’ is used as the key
of the return qualifier.

• numberOfArgs – hierarchyOf Integer, the number of args in the signature.positions:
instanceOf Dictionary {key: (iOf String | iOf Integer), value: hOf Integer},

• returnQualifier – hOf SEMReturnQualifier, the return qualifier

IBM Network Computing Software

• SignatureCache – iOf Dictionary {key: (hOf Class | hOf Metaclass), value: iOf
Dictionary {key: iOf Symbol, value: hOf SEMSignature}}, class variable that caches
signatures for methods that do not contain their own signature. It is a dictionary keyed by
the class with values that are dictionaries keyed by the selector symbol.

Key responsibilities and methods

Collect and provide qualifiers for arg and return attributes
• addMethodArgumentQualifier: qualifier for: keyword – <qualifier: hOf SEMQualifier,

keyword: hOf String, ^self> Add variable-qualifier pair to dictionary.

• addReturnQualifier: qualifier – <qualifier: hOf SEMReturnQualifier, ^self> Add the
given qualifier as the return qualifier."

• qualifierFor: keyword – <keyword: hOf String, ^ hierarchyOf SEMQualifier> Return a
copy of the requested qualifier.

• qualifierAtIndex: index – <index: hOf Integer, ^ hierarchyOf SEMQualifier> Return the
indexed arg qualifier.

• returnAttribute – <^hierarchyOf SEMAttribute> Return my return attribute. Note: a
return attribute begins with an empty alternatives qualifier as the deduced qualifier.

Important subclasses

Two subclasses of Signature are used to return the result from a method lookup:

SEMSignature subclass: #SEMSignatureWithReceiver
instVars: 'clientSend receivingClass receivingQualifier '

• clientSend – hOf SEMSend, the Send step that invokes the signature’s method.

• receivingClass – (hOf Class | hOf Metaclass), the class of the receiver, which may differ
from the class that implements the method.

• receivingQualifier – hOf SEMQualifier, the qualifier of the reiceiver.

SEMSignatureWithReceiver ties together the signature found in the lookup, the send step
that requested the lookup, the class of the receiver, and the qualifier of the receiver. Note, if
the receiving qualifier is an alternatives qualifier, there may be more than one signature
found.

SEMSignature subclass: #SEMNotUnderstood
instVars: 'enclosingClass selectorSymbol '

• enclosingClass – (hOf Class | hOf Metaclass)

• selectorSymbol – iOf Symbol

SEMNotUnderstood is returned when a method lookup fails. Its primary role is to provide
information about the error.

Design and implementation 21

IBM Network Computing Software

Attribute

Class structure
Object subclass: #SEMAttribute
 instanceVariableNames: 'token deducedQualifier declaredQualifier '
 classVariableNames: 'ClassAttributeCache '
 poolDictionaries: 'SEMExceptions NAFParsingExceptions '

• token – hierarchyOf SEMToken, the token for the variable modeled by this attribute.
Note, the token encodes both the name and the variable type (e.g., argument, temporary,
instVar, ...)

• deducedQualifier – hierarchyOf SEMQualifier, the qualifier inferred by the static
analysis

• declaredQualifier – hierarchyOf SEMQualifier, the qualifier declared in the design

• ClassAttributeCache – iOf Dictionary {key: (hOf Class | hOf Metaclass), value: iOf
Dictionary {key: iOf String, value: hOf SEMQualifier}}, holds the attributes for kernel
classes. It is a class variable which is a dictionary keyed by the class with values that are
other dictionaries keyed by the attribute name with values that are attribute qualifiers for
the instance and class variables.

Key responsibilities and methods

Resolve unresolved qualifiers
• resolveInExecutionModel: executionModel – <executionModel: hOf

SEMExecutionModel, ^self> If needed, replace instances of SEMSelf and SEMArgN
with resolved instanceQualifiers.

Qualifier

Class structure
Object subclass: #SEMQualifier
 classInstanceVariableNames: 'parsingPrefixes partialParsingPrefixes '
 instanceVariableNames: 'isFuzzy '
 classVariableNames: ' '
 poolDictionaries: 'SEMExceptions NAFParsingExceptions '

The state maintained by SEMQualifier is related to qualifier’s self parsing behavior.
Qualifiers parse themselves from strings, e.g., the string defining a signature. However we
are not interested in the parsing behavior for the purposes of this report.

IBM Network Computing Software

Key responsibilities and methods

Method lookup
Following is the method lookup code in SEMQualifier:

signatureForSelector: aSelector sentTo: aClass
"<aSelector: hOf Symbol, aClass: (hOf Class | hOf Metaclass),
 ^(hOf SEMSignatureWithReceiver | hOf SEMNotUnderstood | hOf SEMSignature)>"
" Models virtual machine method lookup, returning the signature of
 the receiver."

| receiver signature |
receiver := aClass.
[(receiver notNil and: [receiver methodDictionary includesKey: aSelector])

ifTrue:
[signature := self signatureForReceiver: receiver selector: aSelector.
 signature isUnderstood

ifTrue:
[^SEMSignatureWithReceiver from: signature

 forReceivingClass: aClass
 receivingQualifier: self]].

 receiver == nil]
whileFalse:

[receiver := receiver superclass].
^self enclosingClass: aClass doesNotUnderstand: aSelector

Qualification
• qualifyingClasses, Answer a collection of classes that satisfy the receiver's qualification.

For the abstract Qualifier class, it returns an empty set. Subclasses do the appropriate
thing.

• qualifies: aQualifier – <aQualifier: hierarchyOf SEMQualifier, ^(true | false)>, subclass
implementors of this message answer the question: is the set of objects that qualify for
aQualifier a subset of those that qualify for me.

• partiallyQualifies: aQualifier – <aQualifier: hierarchyOf SEMQualifier, ^(true | false)>,
are some of aQualifier's alternatives qualified by me?

Resolution of qualifiers in the context of an execution model or signature
• resolvedIn: executionModel – <executionModel: hOf SEMExecutionModel, ^self>, the

abstract qualifier returns self which is already resolved. Subclasses that represent
unresolved qualifiers, such as SEMSelf and SEMArgN, do the appropriate resolution.

• resolvedInSignature: signature – <signature: hOf SEMSignatureWithReceiver,
^hierarchyOf SEMQualifier>, default is to return self which is already resolved.
Subclasses do appropriate resolution. For example, SEMSelf returns the receiver
qualifier of the send. SEMArgN returns the appropriate arg qualifier passes to the
message send.

• resolvedInReceiverOf: aSend – <aSend: hOf SEMSend, ^self>, default is to return self
which is already resolved. SEMSelf returns the receiving qualifier of the send.
SEMArgNAspect refers to an aspect of one of the args to the method and returns that
aspect. And so forth.

Design and implementation 23

IBM Network Computing Software

Behavior of subclasses

• AlternativesQualifier – maintains its qualifiers, iOf OrderedCollection {of:
SEMQualifier}. Its qualifyingClasses method answers the set of qualifying classes
implied by all its qualifiers.

• BlockQualifier – maintains its return qualifier and any arg qualifiers. The
qualifyingClasses method answers the ‘Context’ class. Compares itself with a
blockSignatureQualifier via the method – blockSignatureQualifies: aBlockQualifier
which checks that its block signature is appropriate for aBlockQualifier. To do so, it
follows the rule of contravariance, i.e., answers true if aBlockQualifier's args are more
general than its own and aBlockQualifier's return is a subset of its own.

• ClassQualifier – important instVars are: rootClass (iOf Symbol) which is the name of the
class it represents, and meta (true | false) which is true if the qualifier represents the
class itself, false if it represents an instance.

• Disqualifier – This qualifier marks a disqualification, i.e., a mismatch. Its primary
behavior is to answer false to the qualifies: message. It also holds an instVar, reason
(hOf String), that keeps an explanation for the disqualification.

• InstanceQualifier – created when an unresolved qualifier such as self is resolved.
Important isntVars are: pseudoVar (iOf String) which specifies the pseudoVar that gave
rise to this instanceQualifier (e.g,, self, arg1, …), qualifier (hOf SEMQualifier) which is
the resolved qualifier, and copy (true | false) which is true if this arose from a qualifier
like ‘self copy’. When an instanceQualifier is asked if it qualifies another qualifier, it
answers true only if the other qualifier is an instanceQualifier for the same pseudoVar
with the same copy status. For other issues of qualification, it delegates to the actual
qualifier it holds.

• LiteralBlockQualifier – instVars are: executionContext (hOf SEMExecutionContext) that
holds the executionSteps for the literal block, numberOfArgs (hOf Integer), and
temporaries (hOf OrderedCollection {of: hOf EsLocal}) which specify any temp
variables defined within the block.

• Any – a qualifier that qualifies any other qualifier that is not disqualified. It responds to
the qualifyingClasses message with a collection containing Object and any other
subclasses of nil in the system.

• False, Nil, True – qualifiers that represent the unique instances. They respond to
qualifyingClasses in the obvious way. The respond to qualifies: aQualifier by answering
^aQualifier = self.

• None – used for a return qualifier where the method or block does not return.. The only
qualifier it qualifies is another instance of None.

• Self, ArgN, SelfAspect, ArgNAspect, SelfCopy, ArgNCopy – unresolved qualifiers that
appear in signatures but do not participate in the operation of the SEM until they have
been resolved. The ArgN varieties of these qualifiers know their index, i.e., which arg
they represent. The three key methods implemented by these qualifiers are: resolvedIn:
executionMode, which returns the appropriate qualifier from the method under analysis,
resolvedInReceiverOf: aSend and resolvedInSignature: aSignatureWithReceiver, both of
which return the appropriate qualifier from the receiver of the send (the choice between

IBM Network Computing Software

the last two is simply a matter of which object is handy at the moment, the send, or the
signature).

• SelfValue, ArgNValue – unresolved qualifiers that apply only to blocks. They refer to
the result qualifier obtained by sending the evaluationResult message to the block. This
causes the evaluation of the block if it has not already been evaluated..

• Unspecified – a qualifier that plays the special role of marking the fact that a newly
created object requires an aspect that must be deduced by usage in the method. This is
usually due to its assignment to a temp variable that has no declared qualifier. The two
key behaviors, which are implemented by SEMQualifierAspect, are:
adoptAspectSpecifiedBy: specifiedAspect, and adoptAspectFrom: aQualifier forKey:
aspectKey. Both of these cause the adopted aspect to be added to the alternatives
qualifier that includes the unspecified qualifier.

QualifierAspect

Class structure
Object subclass: #SEMQualifierAspect
 instanceVariableNames: 'aspects '
 classVariableNames: 'AspectCache DefaultAspects '
 poolDictionaries: 'SEMExceptions '

• aspects – instanceOf LookupTable {key: hOf Symbol, value: hOf SEMQualifier}, the
key value pairs of the aspect(s) of the qualifier this aspect modifies.

• DefaultAspects – iOf Dictionary {key: Symbol, value: Symbol}, a dictionary that
specifies the default aspect keys of common classes. For all the simple collections, e.g.,
Array, OrderedCollection, String, Symbol, Set, etc., the default aspect key is of:. For
streams, the default is on:. And for the various kinds of dictionary it is value:.

• AspectCache – iOf Dictionary {key: iOf Symbol, value: iOf Dictionary {key: iOf
Symbol, value: hOf SEMQualifier}}. The top level dictionary is keyed by className
symbols, its values are dictionaries that are themselves keyed by aspect symbol (e.g.,
#of:) with values that are the qualifier to be used as the default aspect for that key in that
class. That is, this cache holds the default qualifiers for the various aspects used by the
common classes. In most cases, including the simple collections, the default of: qualifier
is any. Because this is so uninformative, it is seldom useful to take the default. But
others are usually correct, e.g., ByteArray’s default is hOf Integer, String’s default is hOf
Character, Interval’s is hOf Integer, Stream’s on: aspect is hOf String and its of: aspect is
hOf Character. In these cases, declaring the aspect is a matter of taste.

Key responsibilities and methods

Qualification
• qualifies: aQualifierAspect – <aQualifierAspect: hierarchyOf SEMQualifierAspect,

^(true | false)>, answer true if the set of the aspect/qualifier pairs in aQualifierAspect is a

Design and implementation 25

IBM Network Computing Software

subset of mine.

Resolution
• adoptAspectFrom: aQualifier forKey: aspectKey – <aQualifier: hOf SEMClassQualifier,

aspectKey: iOf Symbol, ^self>, I have an unspecified aspect. Add aQualifier as an
alternative along with the unspecified aspect.

• asSpecifiedBy: specifiedAspect – <specifiedAspect: hOf SEMQualifierAspect, ^hOf
SEMQualifierAspect>, I have an unspecified aspect. Answer a copy of myself that has
taken on the specification defined by the corresponding aspect in aQualifier.

• RemoveNoneAndUnspecified – <^self>, remove none and unspecified from my aspect(s).

• resolveAspectsFor: aSend – <aSend: hierarchyOf SEMSend, ^self>, Resolve any
unresolved aspects from the send, i.e., iterate over my aspects, replacing each unresolved
aspect with the result of sending it the message resolvedInReceiverOf: aSend.

ExecutionStep

Class structure
Object subclass: #SEMExecutionStep
 instanceVariableNames: 'start end referent result breakpoint '
 classVariableNames: ''
 poolDictionaries: 'SEMExceptions '

• start – hOf Integer, the position of the first character in the code that gives rise to this
step.

• end – hOf Integer, the position of the last character in the code that gives rise to this step.

• referent – (hOf SEMToken | hOf EsLiteral | hOf SEMQualifier | hOf
SEMExecutionModel)

• result – hOf SEMQualifier. Note: for most steps the result is a qualifier. But it has
become a grab bag of misc things for some steps, e.g., the result of a
EnterConditionalBlock is an integer. These misc results are to support the needs of tools
like the OID generator that need odd bits of information, especially from housekeeping
steps that start and end blocks.

• breakpoint – (true | false), true if the execution should halt and bring up a debugger.

Class hierarchy

Following are the subclasses of SEMExecutionStep. Indenting indicates subclassing.

IBM Network Computing Software

SEMExecutionStep instVars: 'start end referent result'
SEMConvertToBlockQualifier
SEMDupeTOS
SEMEnterContext

SEMEnterBlockContext
SEMEnterConditionalBlock instVars: 'keyword'

SEMEnterMethodContext
SEMExitContext

SEMExitBlockContext
SEMExitConditionalBlock

SEMExitMethodContext
SEMMergeTopTwo instVars: 'enterBlock1 enterBlock2 result1 result2'
SEMPopAndStoreBlockArg
SEMPopAndStoreVar
SEMPopForSend instVars: 'send'

SEMPopArg instVars: 'arg argIndex'
SEMPopReceiver

SEMPopTOS
SEMPushImmediate instVars: 'qualifier'
SEMPushLiteral
SEMPushLiteralBlock
SEMPushVar
SEMRepush
SEMReturnImmediate
SEMReturnTOS instVars: 'rawReturnQualifier'
SEMSend instVars: 'numberOfArgs args signatures receiver

 disqualifications'
SEMStoreVar

Key abstract responsibility

• executeIn: anExecutionModel – <executionModel: hierarchyOf SEMExecutionModel,
^self>. Each subclass implements this method. These methods collaborate with the
executionModel to accomplish the desired behavior of the particular step. That is, they
send messages to the executionModel to push and pop stacks, fetch from and store to
attributes, and return results. They also collaborate with the object in their ‘referent’
instVar which contains the element of code (e.g., a token, a literal, or a qualifier) that the
step refers to, if any.

Behavior of subclasses

• ConvertToBlockQualifier – Generated by EsWhileStatement. Used only for receiver of a
whileTrue: or whileFalse: message. Converts the top item on the stack into a zero arg
block qualifier with its return set to the item on the top of the stack.

• DupeTOS – Generated by EsAssignmentExpression and EsCascadedExpression. Pushes
a duplicate of the top qualifier on the stack.

• EnterBlockContext – Generated by EsBlock. Requests the LiteralBlockQualifier to set
up attributes for any local temp variables.

• EnterConditionalBlock – Generated by EsBlock when the block is an argument to
messages like #ifTrue:, #ifFalse:, etc. Sets up local attributes and increments the
conditionalBlockDepth on entry to the block. If the conditional test that controls the

Design and implementation 27

IBM Network Computing Software

block’s execution can be used to deduce more about an attribute, it does so and adds the
newly deduced attribute qualifier to the local attributes.

• EnterMethodContext – Generated by EsMethod. Tells the executionModel to get self
and args from the externalStack.

• ExitBlockContext – Generated by EsBlock. Saves the result of the execution of the block
and then pops the literal block qualifier off of the stack.

• ExitConditionalBlock – Generated by EsBlock. Does same as ExitBlockContext, and in
addition, decrements the conditionalBlockDepth.

• ExitMethodContext – Generated by EsMethod. Saves the result of the method execution.

• MergeTopTwo – Generated by EsBlock. Pop the top two stack items, combine them into
an AlternativesQualifier, and push result. Used for result of #ifTrue:ifFalse:.

• PopAndStoreBlockArg – Generated by EsTemporaries.

• PopAndStoreVar – Generated by EsAssignmentExpression. Store the qualifier on the top
of the stack to the attribute for the variable. Then pop the stack if the store succeeded
(i.e., if there was no qualifier mismatch). If the store is disqualified, leave the result on
top of the stack.

• PopArg – Generated by EsCascadedExpression, EsMessageExpression, and
EsWhileStatement. Pops top qualifier and saves it, resolves it if necessary, and passes it
to the Send step. If the arg is a literalBlock that must be evaluated, initiate the evaluation.

• PopReceiver – Generated by EsCascadedExpression, EsMessageExpression, and
EsWhileStatement. Pops top qualifier and saves it. If the receiver is a block that should
be evaluated, initiate the evaluation.

• PopTOS – Generated by EsCascadedExpression and EsStatement. Simply pops the top
qualifier. The PopTOS step actually keeps the popped qualifier “for the record” but the
effect on execution is that it is discarded. This is necessary for intermediate expression
results in a cascade, and for the result of most statements.

• PushImmediate – Generated by EsBlock. Push a specific qualifier stored with the step.
Used for housekeeping to push a SEMNone qualifier to be returned if the block ends with
a return from the method.

• PushLiteral – Generated by EsLiteral. Pushes the qualifier appropriate to the literal (e.g.,
hOf Integer, or hOf String).

• PushLiteralBlock – Generated by EsBlock. Pushes the LiteralBlockQualifier.

• PushVar – Generated by EsBlock, EsLocalReference, and EsVariable. Pushes the
deducedQualifier from the attribute that models the variable, if one has been deduced,
else push the declaredQualifier.

• Repush – Generated by EsBlock. Pushes the last qualifier popped from the stack. Used
to replace the value of the last statement executed in a block (which is popped routinely
at the end of each statement) so that it becomes the value of the block.

• ReturnImmediate – Generated by EsMethod. Used to return the default self qualifier at
the end of a method.

IBM Network Computing Software

• ReturnTOS – Generated by EsStatement. Used for “return” statements.

• Send – Generated by EsCascadedExpression, EsMessageExpression, and
EsWhileStatement. Its function has been described earlier.

• StoreVar – Not used by current SEM. Stores qualifier to deducedQualifier of appropriate
attribute.

Generation of ExecutionSteps

From code

Each node of the parse tree implements an #addStepsTo: method. The details of how this is
done depend upon specifics of the parse tree as well as upon the execution steps. Below are
some representative examples from the VisualAge ParseNodes.

EsStatement
addStepsTo: aContext

"<aContext: hOf SEMExecutionContext, ^self>"
"Add the primitive virtual machine operations used to execute
 the statement to aContext."

self expression addStepsTo: aContext.
self isReturn
 ifTrue: "return object on top of stack (deleting it)"
 [aContext addStep: (SEMReturnTOS start: sourceStart

 end: self sourceEnd
 referent: self)]

 ifFalse: "discard object on top of stack"
 [aContext addStep: SEMPopTOS new]

Note: if the statement is not a return statement, its value, which is left on the top of the stack,
must be discarded.

EsAssignmentExpression
addStepsTo: aContext

"<aContext: hOf SEMExecutionContext, ^self>"
"Add the primitive virtual machine operations used to execute
 the Expression to aContext."

self rhs addStepsTo: aContext.
aContext addStep: SEMDupeTOS new.
aContext addStep: (SEMPopAndStoreVar start: variable sourceStart

 end: variable sourceEnd
 referent: variable variableToken).

Note: we duplicate the top of stack qualifier so that one copy will remain as the value of the
expression after the other is popped and stored in the variable.

Design and implementation 29

IBM Network Computing Software

EsLocalReference
addStepsTo: aContext

"<aContext: hOf SEMExecutionContext, ^self>"
"Add step to push the variable."

aContext addStep: (SEMPushVar start: self sourceStart
 end: self sourceEnd
 referent: self variableToken)

EsBlock
addStepsTo: aContext

"<aContext: hOf SEMExecutionContext,
 ^instanceOf SEMLiteralBlockQualifier>"
"Create a new LiteralBlockQualifier with its new blockContext and
 add to it the execution steps needed to execute the block."

| blockContext blockQualifier |
blockContext := SEMExecutionContext forModel: aContext executionModel.
blockQualifier := SEMLiteralBlockQualifier executionContext:

blockContext.
blockQualifier numberOfArgs: self numberOfArgs.
blockQualifier temporaries: self temporaries.
blockContext addStep:

(SEMEnterBlockContext start: self sourceStart end: self sourceEnd
 referent: blockQualifier).

self addOpenCodedStepsTo: blockContext.
blockContext addStep:

(SEMExitBlockContext start: self sourceStart end: self sourceEnd
 referent: blockQualifier).

aContext addStep:
(SEMPushLiteralBlock start: self sourceStart end: self sourceEnd

 referent: blockQualifier).
^blockQualifier

Note: this method creates the scaffolding for the block. The following method creates the
innards of the block.

addOpenCodedStepsTo: aContext
"<aContext: hOf SEMExecutionContext, ^self>"
"Add the execution steps needed to execute the block.
 Pop args if any to #methodTemp or #blockTemp attributes
 statements - leave last result on stack as value of block.
 Issue: if last statement is return, block doesn't have value"

self hasArgs
ifTrue: [arguments addStepsTo: aContext].

"Note: we avoid the arguments getter here,
 it doesn't return the instVar"

self hasStatements
ifTrue:

[self addStatementStepsTo: aContext]
ifFalse: "put nil on the stack"

[aContext addStep: (SEMPushVar
 start: self sourceStart
 end: self sourceEnd
 referent: (SEMToken type: #pseudoVar

textString: 'nil'))]

IBM Network Computing Software

EsCascadedExpression
addStepsTo: aContext

"<aContext: hOf SEMExecutionContext, ^self>"
"Add steps for the CascadedExpression. Push he receiver then for
 all but the last message, duplicate the stack top, push the
 args, push a #send directive, and discard the stack top (send
 result). For the last message, don't duplicate the stack top or
 discard the result."

| lastMessage |
lastMessage := self messagePatterns last.
self receiver addStepsTo: aContext.
self messagePatterns do: [:aMessage |

lastMessage == aMessage
ifFalse: [aContext addStep: SEMDupeTOS new].

aMessage addStepsTo: aContext. "message pushes args"
self addSendStepsFor: aMessage to: aContext.
lastMessage == aMessage

ifFalse: [aContext addStep: SEMPopTOS new]]

EsKeywordPattern
addStepsTo: aContext

"<aContext: hOf SEMExecutionContext, ^self>"
"Add the primitive virtual machine operations used to push
 my args onto the stack.
 Note: the VM expects self to have been pushed first, then

 first arg, second arg, etc."

self arguments do: [:anArg |
anArg addStepsTo: aContext]

Example of execution steps generated for a simple method

Consider the following simple method:
numberOfButterfliesIn: butterflies

"<butterflies: hOf Collection {of: hOf Butterfly}, ^hOf Integer>"
"example of short method that returns the number of butterflies."

| size |
size := butterflies size.
^size

Design and implementation 31

IBM Network Computing Software

The ten execution steps generated for this method are as follows:
1. SEMEnterMethodContext
2. SEMPushVar (#argument butterflies)
3. SEMPopReceiver
4. SEMSend (#unary size)
5. SEMDupeTOS
6. SEMPopAndStoreVar (#temporary size)
7. SEMPopTOS
8. SEMPushVar (#temporary size)
9. SEMReturnTOS ^size
10.SEMExitMethodContext

Generation of execution steps from bytecodes

Because of the relatively close correspondence between execution steps and bytecodes, it
should be possible to generate executionSteps directly from bytecodes without having to
parse the source code. This could be important in assuring the accuracy of signatures for
methods that have their source code hidden.

IBM Network Computing Software

BIBLIOGRAPHY

[BG98a] S. L. Burbeck & S. G. Graham. A design virtual machine for static analysis of
Smalltalk. IBM Technical Report TR29.3021, 1998.

[BG98b] S. L. Burbeck & S. G. Graham. Using signatures to improve Smalltalk productivity
and reuse. IBM Technical Report TR29.3020, 1998.

[BI82] A. H. Borning and D. H. H. Ingalls. A type declaration and inference system for
Smalltalk. In Conference Record of the Ninth Annual ACM Symposium on Principles
of Programming Languages, pp. 133 - 139, 1982.

[Bur96] S. L. Burbeck. Real-time complexity metrics for Smalltalk methods. IBM Systems
Journal. Vol. 35, No. 2, pp. 204-226, 1996.

[GB98] S. G. Graham & S. L. Burbeck. Deriving object structure diagrams from Smalltalk
code. IBM Technical Report TR29.3027, 1998.

[GR83] Adele Goldberg and David Robson. Smalltalk-80 The Language and its
Implementation, Addison-Wesley, Reading, MA, 1983.

[Ing83] Daniel H. H. Ingalls. The evolution of the Smalltalk virtual machine. In Smalltalk-80
Bits of history words of advice. Glenn Krasner, ed. pp. 9-28, Addison-Wesley,
Reading, MA, 1983.

[JF88] R. E. Johnson and B. Foote. “Designing Reusable Classes,” Journal of Object-Oriented
Programming, 1(2), 22-30,35, June/July, 1988.

Bibliography 33

	Creating the ExecutionModel
	Stepping through the static analysis
	Executing a step
	Class structure
	Key responsibilities and methods
	Class structure
	Key responsibilities and methods
	Class structure
	Key responsibilities and methods
	Important subclasses
	Class structure
	Key responsibilities and methods
	Class structure
	Key responsibilities and methods
	Behavior of subclasses
	Class structure
	Key responsibilities and methods
	Class structure
	Class hierarchy
	Key abstract responsibility
	Behavior of subclasses
	From code
	Example of execution steps generated for a simple method
	Generation of execution steps from bytecodes

